Znajdź zawartość
Wyświetlanie wyników dla tagów 'kropka kwantowa' .
Znaleziono 7 wyników
-
Jak zmierzyć temperaturę wewnątrz komórek, które są tak małe, że na główce szpilki zmieściłoby się ich aż 60 tysięcy? Zastosować nanotermometry w postaci kropek kwantowych. Haw Yang z Princeton University i Liwei Lin z Uniwersytetu Kalifornijskiego w Berkeley opowiedzieli o swoich osiągnięciach na konferencji Amerykańskiego Towarzystwa Chemicznego. Zastosowaliśmy nanotermometry. Są to kropki kwantowe, czyli półprzewodnikowe kryształy wystarczająco małe, by dostać się do pojedynczej komórki, gdzie zmieniają barwę pod wpływem zmiany temperatury. Wykorzystaliśmy kropki kwantowe kadmu i selenu, które emitują odpowiadające temperaturze światło o różnym kolorze (fale o różnej długości). Dzięki naszym przyrządom odnotowujemy zmiany barw – wyjaśnia Yang. Naukowcy podkreślają, że o tym, co dzieje się we wnętrzu komórek, wiemy zadziwiająco mało. Tymczasem kiedy ktoś myśli o chemii, temperatura jest jednym z najważniejszych czynników fizycznych, które mogą się zmienić pod wpływem reakcji chemicznej. Panowie postanowili uzupełnić luki w wiedzy i zmierzyć temperaturę życia (i śmierci). Specjaliści od jakiegoś już czasu podejrzewali, że temperatura wewnątrz komórek jest zmienna. Powodów należy upatrywać choćby w przebiegających nieustannie reakcjach biochemicznych. W wyniku części z nich powstają energia i ciepło. Ponieważ niektóre komórki są bardziej aktywne od innych, niezużyta energia jest rozpraszana jako ciepło. Gorętsze bywają także pewne rejony komórek. Yang i Lin wskazują na okolice w pobliżu centrów energetycznych – mitochondriów. Amerykanie zorientowali się, że tak właśnie jest, wprowadzając kropki kwantowe do hodowanych w laboratorium mysich komórek. Między poszczególnymi częściami komórek odkryli różnice rzędu kilku stopni Fahrenheita: niektóre były chłodniejsze, a niektóre cieplejsze od reszty. Na razie pomiary dokonywane za pomocą nanotermometrów nie są na tyle dokładne, by podać konkretne wartości liczbowe. Yang tłumaczy, że zmiany temperatury komórek wpływają na cały organizm, np. na stan zdrowia. Wzrost temperatury wewnątrz komórki może przecież oddziaływać na funkcjonowanie DNA, a więc genów, a także różnego rodzaju białek. Przy zbyt wysokich temperaturach niektóre proteiny ulegają denaturacji. Biolog z Princeton University podejrzewa nawet, że komórki wykorzystują zmiany temperatury do komunikacji.
-
- kropka kwantowa
- temperatura
-
(i 10 więcej)
Oznaczone tagami:
-
Zdaniem Rafała Oszwaldowskiego i Igora Zutica z University of Bufallo oraz Andre Petukhowa z South Dakota School of Mines and Technology, magnetyzm w najmniejszej skali podlega nieco innym zasadom niż nam się wydaje. Uczeni opublikowali w Physical Review Letters artykuł, w którym prezentują wyliczenia dowodzące, że możliwe jest stworzenie kropki kwantowej o zaskakujących właściwościach. Magnetyzm materiału jest określany przez spin elektronów. Jeśli w materiale spin większości z nich zwrócony jest w tę samą stronę, materiał posiada właściwości magnetyczne. Elektrony mogą też działać jak „magnetyczni posłańcy", którzy za pomocą własnego spinu wpływają na spin pobliskich atomów. Według obecnego stanu wiedzy, jeśli spotkają się dwa elektrony o przeciwnych spinach, to ich wpływ na otoczenie będzie się znosił. Wspomniani powyżej naukowcy twierdzą jednak, że nie wygląda to tak prosto. Ich zdaniem w kwantowych kropkach można zaobserwować pewien szczególny rodzaj magnetyzmu pojawiający się w obecności elektronów o przeciwnym spinie. W swoim artykule opisali oni teoretyczną kropkę kwantową zawierającą dwa elektrony o przeciwnych spinach oraz atomy manganu umieszczone w ściśle określonych miejscach kropki. Elektrony będą tam działały jak „magnetyczni posłańcy", wpływając na spin pobliskich atomów. Z wyliczeń Oszwaldowskiego, Zutica i Petukhova wynika, ze oba elektrony będą w odmienny sposób działały na atomy. Jeden z nich będzie bowiem preferował lokalizację na środku kropki, a drugi na jej obrzeżach. To spowoduje, że atomy manganu znajdujące się w różnych częściach kropki będą podlegały różnemu wpływowi. Ten elektron, który będzie na atomy wpływał silniej „wygra" i dostosuje ich spin do swojego, dzięki czemu kropka nabierze właściwości magnetycznych. Igor Zutic zauważa, że jeśli obliczenia się potwierdzą, to całkowicie zmienią naszą wiedzę o interakcjach magnetycznych. Uczony dodaje: gdy mamy dwa elektrony o przeciwnych spinach, założenie jest takie, że pomiędzy nimi będzie istniała równowaga, a zatem żadna magnetyczna wiadomość czyli żadne siły nie wpłyną na spin pobliskich atomów manganu. Ale naszym zdaniem tam zachodzi walka. Podstawowe zasady magnetyzmu są dla nas wciąż tajemnicą i skrywają wiele niespodzianek. Wyliczeniami już zainteresowali się fizycy z University of Bufallo, którzy chcieliby przeprowadzić odpowiednie eksperymenty. Twierdzenia Oszwaldowskiego, Zutica i Petukhova, o ile się potwierdzą, mogą mieć olbrzymi wpływ na spintronikę oraz te działy nauki i gospodarki, które wykorzystują właściwości magnetyczne - z więc na obrazowanie medyczne, elektronikę czy budowę laserów.
-
Najnowsze eksperymenty przeprowadzone przez Grupę Fotoniki Kwantowej w DTU Fotonik oraz Instytut Nielsa Bohra z Uniwersytetu Kopenhaskiego dowodzą, że kwantowe kropki... nie są kropkami. Odkrycie to ma kolosalne znacznie, gdyż otwiera drogę dla nowych zastosowań kropek. Kwantowa kropka to specyficzne źródło światła, które emituje pojedyncze fotony. Składa się ona z tysięcy atomów. Dotychczas sądzono, że rzeczywiście jest to kopka, czyli punktowe źródło światła. Uczeni doszli jednak do wniosku, że kropka nie jest kropką. Podczas przeprowadzonego eksperymentu naukowcy rejestrowali emisję fotonów z kwantowych kropek umieszczonych blisko metalicznego lustra. Punktowe źródło światła ma takie same właściwości niezależnie od swojego ułożenia - standardowego czy odwróconego do góry nogami. Uczeni zaobserwowali jednak, że po odwróceniu kropki symetria zostaje zaburzona, a zatem właściwości emisji są zależne od ułożenia. To wskazuje, że kropki nie są kropkami. Mogą zatem być bardziej użyteczne niż dotychczas sądzono. Na powierzchniach metalicznych luster pojawiają się plazmony, a plazmonika to bardzo obiecująca dziedzina nauki, która może znaleźć zastosowanie w informatyce kwantowej czy pozyskiwaniu energii słonecznej. Fakt, że właściwości światła emitowanego z kwantowych kropek mogą być znacząco zmieniane oznacza, że światło takie może z jeszcze większym prawdopodobieństwem niż przypuszczano prowadzić do wzbudzania plazmonów. Kwantowe kropki mogą zatem współpracować z nimi bardziej efektywnie, a zatem mogą być wydajnym źródłem światła w urządzeniach nanofotoniczych. Najnowsze odkrycie znajdzie też zastosowanie w innych niż plazmonika dziedzinach wiedzy, takich jak elektrodynamika kwantowa czy badania nad fotonicznymi kryształami.
- 1 odpowiedź
-
Specjaliści z Fujitsu i Universytetu Tokijskiego poinformowali o przeprowadzeniu udanych prób szybkiej transmisji danych, podczas których wykorzystano lasery z kropek kwantowych. Informacje przesłano z prędkością 25 gigabitów na sekundę. Lasery z kropek kwantowych są postrzegane jako przyszłość telekomunikacji. Pozwalają bowiem na szybkie przekazywanie informacji przy minimalnym zapotrzebowaniu na energię. Są przy tym mniej wrażliwe na zmiany temperatury i wysyłają dane na większe odległości. Japończycy już teraz osiągnęli prędkość transmisji rzędu 25 Gb/s i nie wykluczają, że w przyszłości dzięki takim laserom uda się przesyłać dane z prędkością 100 Gb/s. Dotychczas za pomocą tego typu urządzeń udawało się przesyłać do 10 gigabitów na sekundę. Zwiększenie wydajności laserów wymagało od Fujitsu i Uniwersytetu Tokijskiego opracowania nowej technologii ich produkcji oraz zwiększenia liczby kropek wchodzących w skład lasera. Jednocześnie uzyskano spore oszczędności, gdyż nowa technologia pozwoliła na rezygnację z kosztownych obudów zawierających kontrolery temperatury. Zwiększono zatem wydajność laserów, jednocześnie obniżając koszty ich produkcji.
-
- transmisja danych
- komunikacja
-
(i 3 więcej)
Oznaczone tagami:
-
Współcześni naukowcy, np. Phillipe Walter z French Museums' Research and Restoration Centre w Paryżu, uważają, że moglibyśmy się wiele nauczyć o nanotechnologii od... fryzjerów ze starożytnej Grecji. Podczas farbowania włosów popularnym przed 2000 lat barwnikiem produkowanym na bazie ołowiu wewnątrz włókien włosa tworzą się kryształy siarczku ołowiu o średnicy 5 nanometrów. Przypominające włosy rusztowania można by wykorzystać do hodowli kropek kwantowych, nazywanych też niekiedy sztucznymi atomami. W ich wnętrzu "więzione" byłyby elektrony. Umożliwiłoby to wykorzystanie ich właściwości kwantowych, takich jak spin, w rozwijanych właśnie kwantowych systemach komputerowych. Dotychczasowe metody wytwarzania kropek kwantowych były źródłem błędów i wad. Prace Francuzów zostaną opisane w magazynie Nano Letters. Kropka kwantowa to fragment przestrzeni ograniczony w 3 wymiarach barierami potencjału. W jej wnętrzu zostaje uwięziona cząstka, np. elektron, o długości fali porównywalnej z rozmiarami kropki.
- 3 odpowiedzi
-
- bariery potencjału
- elektrony
-
(i 5 więcej)
Oznaczone tagami:
-
Włoscy i amerykańscy akademicy stworzyli nowy rodzaj pamięci komputerowych. Do ich zbudowania wykorzystali... wirusy, które przyczepiono do kwantowych kropek (niewielkich kryształów półprzewodnika). Powstał w ten sposób hybrydowy materiał, który pozwoli na zbudowanie układów elektronicznych kompatybilnych z organizmami żywimi. Już wcześniej zauważono, że materiał biologiczny można połączyć z molekułami nieorganicznymi i stworzono dzięki temu bioczujniki. Uczeni z University of California w Riverside poszli o krok dalej – stworzyli układ, który jest w stanie przechowywać informacje. Kierujący badaniami Mihri Ozkan mówi, że jego zespół nie spodziewał się uzyskania takich rezultatów, ponieważ żadna z nanocząsteczek nie jest zdolna do przechowywania informacji, zyskują tę zdolność dopiero gdy tworzą hybrydę [biologiczno-nieorganiczną – red.]. Uczeni rozpoczęli swoje prace od połączenia nieszkodliwego dla człowieka wirusa mozaiki wspięgi chińskiej (CPMV) z kropkami kwantowymi stworzonymi z selenku kadmu i siarczku cynku. Następnie tak utworzoną hybrydę umieszczono na polimerowej matrycy i zamknięto pomiędzy dwiema elektrodami. Odkryli, że każda z hybryd jest w stanie przechowywać informacje dzięki temu, że po potraktowaniu jej napięciem o różnej wartości, przyjmuje jeden z dwóch stanów, odpowiadających 0 i 1. Stany te są nieulotne, co znaczy, że nie zmieniają się po odłączeniu napięcia. Hybryda działa dzięki przekazywaniu ładunku elektrycznego pomiędzy kapsydą wirusa a kwantową kropką. Cienka warstwa siarczku cynku stabilizuje elektrony, łapiąc je w swoistą pułapkę. Ozkan informuje, że, przynajmniej teoretycznie, możliwe jest wyprodukowanie z tak zbudowanych hybryd bardzo gęstych układów pamięci. Akademikom udało się wielokrotnie odczytywać, zapisywać i kasować zawartość pojedynczej hybrydy. Zastosowanie ich jako układów pamięci nasuwa się samo, jednak Ozkan uważa, że mogą one spełniać również wiele innych funkcji. W przyszłości takie hybrydy mogłyby zostać wykorzystane jako „zwiadowcy”, którzy podróżując po interesujących lekarzy fragmentach ludzkiego ciała, informowali by o ewentualnych chorobach czy uszkodzeniach.
-
- Mihri Ozkan
- kropka kwantowa
-
(i 3 więcej)
Oznaczone tagami:
-
Badacze z Carnegie Mellon University wprowadzali do guzów kropki kwantowe i dzięki temu mogli obserwować w bliskiej podczerwieni tzw. węzły wartownicze (ang. sentinel lymph node, SLN), czyli węzły chłonne znajdujące się najbliżej ogniska nowotworowego. Zespół dr. Byrona Ballou wykorzystał pokryte polimerami, rozpuszczalne w wodzie kropki kwantowe (Bioconjugate Chemistry). Mapowanie węzłów jest o tyle ważne, że w wielu typach nowotworów przerzuty pojawiają się najpierw właśnie w węzłach wartowniczych. Po wstrzyknięciu kropek bezpośrednio do tkanki guza śledzono ich przemieszczanie się za pomocą analizy fluorescencyjnej w bliskiej podczerwieni, nie uszkadzając przy tym powłok skórnych. Okazało się, że kropki kwantowe niemal natychmiast opuszczały guz wraz z chłonką. Szybko uwidaczniała się sieć połączeń limfatycznych, poprzez którą rozprzestrzeniają się komórki nowotworowe. Mimo zastosowania wielu odmian kropek kwantowych, naukowcy nie zaobserwowali różnic we fluorescencji węzłów chłonnych. Kropki wstrzykiwano różnym zwierzętom, w tym myszom. Obserwowano je od momentu iniekcji przez 2 lata, nie zauważono jednak żadnych toksycznych efektów, choć nawet po tak długim czasie cząsteczki dało się w organizmie wytropić.
-
- bliska podczerwień
- ognisko nowotworowe
- (i 8 więcej)