Search the Community
Showing results for tags 'plazmonika'.
Found 3 results
-
Grafenowe urządzenia wykorzystane w roli fotodetektorów mogą nawet stukrotnie przyspieszyć łącza internetowe. Do takich wniosków doszedł zespół naukowców z University of Manchester i University of Cambridge, wśród których byli odkrywcy grafenu, Andre Geim i Kostya Novoselov. Uczeni wykazali, że połączenie grafenu z metalicznymi nanostrukturami powoduje, że grafen dwudziestokrotnie lepiej wykrywa światło. Już wcześniej odkryto, że gdy do kawałka grafenu zostaną przymocowane, w niewielkiej odległości od siebie, dwa metalowe przewody, to po oświetleniu całość generuje prąd elektryczny. Co jednak ważniejsze, takie urządzenie pracuje niezwykle szybko, być może nawet 100 razy szybciej niż obecnie wykorzystywane fotodetektory. Dzieje się tak dzięki olbrzymiej mobilności i szybkości elektronów w grafenie. Dotychczas jednak poważną przeszkodą był fakt, że grafen absorbował jedynie 3% światła. Reszta impulsu przechodziła przez materiał nie wywołując żadnej reakcji elektronów. Naukowcy rozwiązali ten problem łącząc grafen z metalicznymi nanostrukturami. Te tzw. plazmoniczne nanostruktury dwudziestokrotnie zwiększyły absorpcję światła przez grafen nie wpływając jednocześnie negatywnie na inne jego właściwości. Naukowcy nie wykluczają, że uda się jeszcze bardziej poprawić właściwości grafenu. Grafen wydaje się naturalnym towarzyszem dla plazmoniki. Spodziewaliśmy się, że plazmoniczne nanostruktury mogą poprawić właściwości grafenu, ale miłym zaskoczeniem był fakt, że poprawa jest tak olbrzymia - mówi doktor Alexander Grigorenko, ekspert ds. plazmoniki. Grafen odkrył zatem przed nami swoje kolejne niezwykłe właściwości. Jak zauważył profesor Andrea Ferrari z Cambridge Engineering Department dotychczas skupiano się na właściwościach grafenu przydatnych w fizyce i elektronice. Teraz widzimy, że jego potencjał można wykorzystać też na polu fotoniki i optoelektroniki, gdzie połączenie unikatowych optycznych i elektronicznych właściwości grafenu z nanostrukturami plazmonicznymi pozwoli na wykorzystanie tego materiału nawet w przypadku braku pasma wzbronionego, w takich zastosowaniach jak fotodetektory czy ogniwa słoneczne.
-
- łącze internetowe
- internet
-
(and 3 more)
Tagged with:
-
Najnowsze eksperymenty przeprowadzone przez Grupę Fotoniki Kwantowej w DTU Fotonik oraz Instytut Nielsa Bohra z Uniwersytetu Kopenhaskiego dowodzą, że kwantowe kropki... nie są kropkami. Odkrycie to ma kolosalne znacznie, gdyż otwiera drogę dla nowych zastosowań kropek. Kwantowa kropka to specyficzne źródło światła, które emituje pojedyncze fotony. Składa się ona z tysięcy atomów. Dotychczas sądzono, że rzeczywiście jest to kopka, czyli punktowe źródło światła. Uczeni doszli jednak do wniosku, że kropka nie jest kropką. Podczas przeprowadzonego eksperymentu naukowcy rejestrowali emisję fotonów z kwantowych kropek umieszczonych blisko metalicznego lustra. Punktowe źródło światła ma takie same właściwości niezależnie od swojego ułożenia - standardowego czy odwróconego do góry nogami. Uczeni zaobserwowali jednak, że po odwróceniu kropki symetria zostaje zaburzona, a zatem właściwości emisji są zależne od ułożenia. To wskazuje, że kropki nie są kropkami. Mogą zatem być bardziej użyteczne niż dotychczas sądzono. Na powierzchniach metalicznych luster pojawiają się plazmony, a plazmonika to bardzo obiecująca dziedzina nauki, która może znaleźć zastosowanie w informatyce kwantowej czy pozyskiwaniu energii słonecznej. Fakt, że właściwości światła emitowanego z kwantowych kropek mogą być znacząco zmieniane oznacza, że światło takie może z jeszcze większym prawdopodobieństwem niż przypuszczano prowadzić do wzbudzania plazmonów. Kwantowe kropki mogą zatem współpracować z nimi bardziej efektywnie, a zatem mogą być wydajnym źródłem światła w urządzeniach nanofotoniczych. Najnowsze odkrycie znajdzie też zastosowanie w innych niż plazmonika dziedzinach wiedzy, takich jak elektrodynamika kwantowa czy badania nad fotonicznymi kryształami.
-
Naukowcom z Uniwersytetu Kalifornijskiego w Berkeley udało się przepuścić światło przez niezwykle małą szczelinę. To, co może wyglądać na czysto akademickie badania, będzie miało olbrzymie znaczenie przy miniaturyzacji urządzeń optycznych wykorzystywanych w telekomunikacji czy komputerach optycznych. Dotychczas rekordowo mała szczelina, przez którą przechodziło światło, miała 200 nanometrów średnicy. Teraz zespół profesora Xiang Zhanga udowodnił, że światło może przejść przez otwór o średnicy zaledwie 10 nanometrów. To aż 100 mniej, niż wynosi średnica obecnie używanych kabli optycznych. Ta technologia daje nam olbrzymią kontrolę nad światłem i pozwoli na stworzenie w przyszłości zadziwiających urządzeń - mówi Rupert Oulton, jeden z autorów badań. W miarę postępującej miniaturyzacji układów scalonych inżynierowie pracujący nad zastosowaniem w nich przewodów optycznych w miejsce miedzianych, szukają sposobów na miniaturyzację tych przewodów. Tak więc badania z Berkeley pozwolą na postępy w budowie maszyn optycznych. Miniaturyzacja ma jednak swoją granicę, na którą natknęli się także naukowcy z Uniwersytetu Kalifornijskiego. Otóż jeśli skompresujemy światło poniżej długości jego fali, światło nie pozostanie w tak małej przestrzeni zbyt długo. Akademicy wykorzystali zjawisko plazmoniki, gdy światło przy powierzchni metalu wiąże się z elektronami. Jednak taka fala świetlna może przebyć bardzo krótki odcinek, a później wygasa. Oulton zastanawiał się jednak nad połączeniem plazmoniki i półprzewodników. Wpadł na pomysł zbudowania światłowodu z bardzo cienkiej warstwy półprzewodnika połączonego z gładką srebrną powierzchnią, co powinno zwiększyć drogę przebywaną przez światło. To bardzo proste rozwiązanie i dziwię się, że nikt wcześniej na to nie wpadł - mówi uczony. Naukowcy przeprowadzili symulacje i okazało się, że światło w takim przewodzie nie tylko mogłoby przejść przez otwór o średnicy 10 nanometrów, ale jego droga wydłużyłaby się 100-krotnie w porównaniu z przeprowadzonym wcześniej doświadczeniem. Oulton wyjaśnia, że taka technika zadziała, ponieważ w tym przypadku półprzewodnikowo-srebrny system działa jak kondensator, przechowując energię pomiędzy okablowaniem a warstwą metalu. Gdy światło przepływa przez otwór, pojawiają się ładunki elektryczne na okablowaniu i metalu, które wydłużają drogą światła. To z kolei obala dotychczasową "prawdę" naukową mówiącą, że im bardziej skompresowane światło, tym krótszą drogę jest ono w stanie przebyć. Okazuje się zatem, że można kompresować światło i jednocześnie wydłużyć przebytą przez nie drogę. Na razie jednak, jak przyznaje Oulton, są to czysto teoretyczne rozważania. Jednak skonstruowanie półprzewodnikowo-srebrnej hybrydy nie powinno nastręczać większych kłopotów. Problem leży w czym innym. Otóż obecnie nie dysponujemy urządzeniami wykrywającymi światło na tak małej przestrzeni jaką jest 10 nanometrów. Zespół Zhanga pracuje jednak nad stworzeniem odpowiednich technik. Kolejne badania będą prowadzone, gdyż dają one nadzieję na dokonanie olbrzymiego postępu. Optyka sięga skali elektronów. A to oznacza, że potencjalnie możemy zrobić coś, co nigdy wcześniej nie było zrobione - mówi Oulton.
- 11 replies
-
- światłowód
- elektron
-
(and 2 more)
Tagged with: