Skocz do zawartości
Forum Kopalni Wiedzy

Znajdź zawartość

Wyświetlanie wyników dla tagów 'plazmon' .



Więcej opcji wyszukiwania

  • Wyszukaj za pomocą tagów

    Wpisz tagi, oddzielając je przecinkami.
  • Wyszukaj przy użyciu nazwy użytkownika

Typ zawartości


Forum

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Szukaj wyników w...

Znajdź wyniki, które zawierają...


Data utworzenia

  • Od tej daty

    Do tej daty


Ostatnia aktualizacja

  • Od tej daty

    Do tej daty


Filtruj po ilości...

Dołączył

  • Od tej daty

    Do tej daty


Grupa podstawowa


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Znaleziono 3 wyniki

  1. Najnowsze eksperymenty przeprowadzone przez Grupę Fotoniki Kwantowej w DTU Fotonik oraz Instytut Nielsa Bohra z Uniwersytetu Kopenhaskiego dowodzą, że kwantowe kropki... nie są kropkami. Odkrycie to ma kolosalne znacznie, gdyż otwiera drogę dla nowych zastosowań kropek. Kwantowa kropka to specyficzne źródło światła, które emituje pojedyncze fotony. Składa się ona z tysięcy atomów. Dotychczas sądzono, że rzeczywiście jest to kopka, czyli punktowe źródło światła. Uczeni doszli jednak do wniosku, że kropka nie jest kropką. Podczas przeprowadzonego eksperymentu naukowcy rejestrowali emisję fotonów z kwantowych kropek umieszczonych blisko metalicznego lustra. Punktowe źródło światła ma takie same właściwości niezależnie od swojego ułożenia - standardowego czy odwróconego do góry nogami. Uczeni zaobserwowali jednak, że po odwróceniu kropki symetria zostaje zaburzona, a zatem właściwości emisji są zależne od ułożenia. To wskazuje, że kropki nie są kropkami. Mogą zatem być bardziej użyteczne niż dotychczas sądzono. Na powierzchniach metalicznych luster pojawiają się plazmony, a plazmonika to bardzo obiecująca dziedzina nauki, która może znaleźć zastosowanie w informatyce kwantowej czy pozyskiwaniu energii słonecznej. Fakt, że właściwości światła emitowanego z kwantowych kropek mogą być znacząco zmieniane oznacza, że światło takie może z jeszcze większym prawdopodobieństwem niż przypuszczano prowadzić do wzbudzania plazmonów. Kwantowe kropki mogą zatem współpracować z nimi bardziej efektywnie, a zatem mogą być wydajnym źródłem światła w urządzeniach nanofotoniczych. Najnowsze odkrycie znajdzie też zastosowanie w innych niż plazmonika dziedzinach wiedzy, takich jak elektrodynamika kwantowa czy badania nad fotonicznymi kryształami.
  2. zieNa Uniwersytecie Kalifornijskim w Berkeley powstał półprzewodnikowy laser, który potrafi wygenerować światło w wyjątkowo małej przestrzeni. Wystarczy mu do tego odległość zaledwie 5 nanometrów. To 100-krotnie mniej, niż potrzebują współczesne konwencjonalne lasery. W normalnych warunkach światło nie może być skupione na przestrzeni mniejszej niż wynosi limit dyfrakcyjny, czyli na mniejszej niż połowa długości jego fali. Ostatnimi czasy uczeni zaczęli eksperymentować z plazmonami powierzchniowymi, czego wynikiem było skonstruowanie opisywanego przez nas niedawno spasera. Wykorzystanie plazmonów jest jednak trudne, gdyż opory w metalu, na powierzchni którego powstają, prowadzą do ich natychmiastowego rozproszenia. Zespół naukowców z Berkeley, pod kierownictwem Xiang Zhanga, pokonał tę przeszkodę tworząc hybrydowy materiał, w którym półprzewodnik z siarczku kadmu został oddzielony od metalowego podłoża 5-nanometrową warstwą izolacyjną. Strukturę taką nazwano hybrydowym falowodem plazmonowym. Dzięki niej udało się skupić światło w przestrzeni 100-krotnie mniejszej, niż było to możliwe wcześniej. Użycie półprzewodnika oznacza zaś, że nową technikę będzie można szybko dostosować do potrzeb przemysłu. Niewykluczone, że uda się wzmocnić oddziaływanie światła na materię, co pozwoli obserwować efekty tego oddziaływania, a to z kolei umożliwi skonstruowanie wyjątkowo wrażliwych bioczujników. Naukowcy wykazali też, że ich laser jest wydajny, może więc zostać wykorzystany w telekomunikacji czy do budowy układów scalonych. Prace swoich kolegów z Berkeley pochwalili naukowcy z Purdue, twórcy pierwszego plazmonowego lasera. Zauważyli przy tym, że obu wynalazków dokonano w 50. rocznicę skonstruowania lasera i oba oznaczają ważny przełom w nanofotonice.
  3. Na Uniwersytecie Kalifornijskim w Berkeley opracowano nową metodę tworzenia układów scalonych, która znacząco zwiększa możliwości obecnie wykorzystywanej litografii. Akademicy połączyli metalowe soczewki skupiające światło dzięki pobudzonym elektronom (plazmonom) z "latającą głowicą" przypominającą głowicę zapisująco/odczytującą dysku twardego. Już obecnie za pomocą takiego urządzenia naukowcy są w stanie tworzyć linie szerokości 80 nanometrów z prędkością 12 metrów na sekundę. Twierdzą przy tym, że uda im się zwiększyć rozdzielczość urządzenia. Dzięki nanolitografii plazmonowej będziemy w stanie 10-krotnie zmniejszyć powierzchnię obecnie wykorzystywanych procesorów, jednocześnie znacząco zwiększając ich wydajność. Technologia ta może również zostać wykorzystana do tworzenia ultragęstych dysków twardych, które przechowają od 10 do 100 razy więcej danych, niż dzisiejsze dyski - mówi profesor Xiang Zhang, szef zespołu badawczego. Współczesne procesy litograficzne są bardzo podobne do procesu tworzenia fotografii. Pokryty światłoczułym materiałem plaster krzemowy poddaje się działaniu światła przepuszczonego przez maskę, która jest wzorcem przyszłego układu scalonego. Następnie naświetlony plaster poddaje się obróbce chemicznej, w wyniku której wzorzec pokrywa się odpowiednią siecią połączeń i podzespołów. Magister Liang Pan, który współpracuje przy wspomniany projekcie z profesorami Zhangiem i Davidem Bogym, wyjaśnia: Litografia optyczna, zwana też fotolitografią, umożliwia tworzenie złożonych wzorców na krzemowym podłożu. Jednak możliwości tej techniki ogranicza fundamentalna natura światła. W celu uzyskania coraz mniejszych elementów, musimy używać światła o coraz krótszej fali, co dramatycznie zwiększa koszty produkcji. Ponadto istnieje też limit dyfrakcji, ograniczający stopień skupienia światła. Przy obecnych technikach litograficznych tą granicą jest 35 nanometrów. Opracowana przez nas technologia pozwala na osiągnięcie znacznie większej rozdzielczości stosunkowo niewielkim kosztem. Naukowcy z Berkeley, by pokonać limit dyfrakcji, postanowili wykorzystać fakt, że na powierzchni metali znajdują się wolne elektrony, które po wystawieniu na działanie światła zaczynają oscylować. Ten proces oscylacji, podczas którego światło jest absorbowane i generowane, jest znany jako fala zanikająca, a jej długość jest znacznie mniejsza niż długość fali światła. Specjaliści stworzyli srebrne plazmonowe soczewki składające się z koncentrycznych kręgów, dzięki którym światło skupia się w centrum soczewki i jest emitowane na drugą stronę przez umieszczoną w jej centrum dziurę. W prototypowych soczewkach dziury miały średnicę mniejszą niż 100 nanometrów, ale, teoretycznie, możliwe jest stworzenie otworów o średnicy 5-10 nanometrów. Zestaw takich soczewek został następnie umieszczony na "latającej plazmonowej głowicy", czyli wspomnianej wcześniej głowicy poruszającej się w czasie procesu litograficznego nad światłoczułą powierzchnią. Eksperci z Berkeley mówią, że na takiej głowicy można umieścić nawet 100 000 soczewek, znacznie zwiększając jej wydajność. Cały proces przypomina nieco odtwarzanie płyt winylowych, gdzie ramieniem z igłą jest głowica plazmonowa, a płytą - obracający się plaster krzemowy. Jako że emitowane przez plazmony światło zanika po przebyciu około 100 nanometrów, głowica musi znajdować się blisko plastra, na którym tworzy układ scalony. Jest ona utrzymywana w odległości 20 nanometrów od plastra przez powietrze, którego ruch wywołany jest obracaniem się samego plastra. Naukowcy udowodnili, że dzięki swojemu urządzeniu są w stanie drukować ścieżki z prędkością od 4 do 12 metrów na sekundę. O tym, jak precyzyjnie działa całość, niech świadczy porównanie profesora Zhanga, który stwierdził, że to tak, jakby Boeing 747 leciał na wysokości 2 milimetrów nad ziemią. Co więcej, odległość wspomnianych 20 nanometrów jest stała i utrzymuje się bez względu na nierówności powierzchni plastra. Obecnie pojedyncza maszyna do litografii kosztuje 20 milionów dolarów, a zestaw masek - milion dolarów. Przechodzenie na kolejny etap procesu produkcyjnego, czyli zmniejszanie skali np. z 60 do 45 nanometrów, wymaga zastosowania kolejnych bardzo kosztownych luster i soczewek. Inżynierowie z Berkeley mówią, że dzięki ich technologii urządzenia do litografii, które muszą powstać, by można było nadal zmniejszać poszczególne elementy układu scalonego, będą kosztowały wielokrotnie mniej, niż przy zastosowaniu tradycyjnej technologii. Istnieją, oczywiście, rozwiązania alternatywne dla propozycji z Berkeley - elektronolitografia czy rentgenolitografia - jednak, w porównaniu z nanolitografią plazmonową proces tworzenia układów scalonych jest w tych przypadkach znacznie wolniejszy. Profesor Zhang mówi, że opracowana przez jego zespół technologia powinna trafić na rynek w ciągu 3-5 lat.
×
×
  • Dodaj nową pozycję...