Znajdź zawartość
Wyświetlanie wyników dla tagów 'bozon Higgsa' .
Znaleziono 15 wyników
-
Głównym powodem wybudowania Wielkiego Zderzacza Hadronów (LHC) były poszukiwania bozonu Higgsa. Urządzenie wywiązało się z tego zadania w 2012 roku i od tej pory poszerza naszą wiedzę o świecie. Teraz naukowcy z eksperymentów CMS i ATLAS w CERN poinformowali o znalezieniu pierwszych dowodów na rzadki rozpad bozonu Higgsa do bozonu Z i fotonu. Jeśli ich spostrzeżenia się potwierdzą, może być to pośrednim dowodem na istnienia cząstek spoza Modelu Standardowego. Model Standardowy przewiduje, że jeśli bozon Higgsa ma masę ok. 125 gigaelektronowoltów – a z ostatnich badań wiemy, że wynosi ona 125,35 GeV – to w około 0,15% przypadków powinien się on rozpadać na bozon Z – elektrycznie obojętny nośnik oddziaływań słabych – oraz foton, nośnik oddziaływań elektromagnetycznych. Niektóre teorie uzupełniające Model Standardowy przewidują inną częstotliwość dla takiego rozpadu. Zatem sprawdzenie, które z nich są prawdziwe, daje nam ważny wgląd zarówno w samą fizykę spoza Modelu Standardowego, jak i na bozon Higgsa. A mowa jest o fizyce poza Modelem Standardowym, gdyż modele przewidują, że bozon Higgsa nie rozpada się bezpośrednio do bozonu Z i fotonu, ale proces ten przebiega za pośrednictwem pojawiających się i znikających cząstek wirtualnych, które trudno jest wykryć. Uczeni z ATLAS i CMS przejrzeli dane z 2. kampanii badawczej LHC z lat 2015–2018 i zdobyli pierwsze dowody na rozpad bozonu Higgsa do bozonu Z i fotonu. Istotność statystyczna odkrycia wynosi sigma 3,4, jest więc mniejsza od sigma 5, kiedy to można mówić o odkryciu. Dlatego też na na razie do uzyskanych wyników należy podchodzić z ostrożnością, wymagają one bowiem weryfikacji. Każda cząstka ma specjalny związek z bozonem Higgsa, zatem poszukiwanie rzadkich dróg rozpadu bozonu Higgsa jest priorytetem. Dzięki drobiazgowemu połączeniu i analizie danych z eksperymentów ATLAS i CMS wykonaliśmy krok w kierunku rozwiązania kolejnej zagadki związanej z bozonem Higgsa, mówi Pamela Ferrari z eksperymentu ATLAS. A Florencia Canelli z CMS dodaje, że podczas trwającej właśnie 3. kampanii badawczej LHC oraz High-Luminosity LHC naukowcy będą w stanie doprecyzować obecnie posiadane dane oraz zarejestrować jeszcze rzadsze rodzaje rozpadów Higgsa. « powrót do artykułu
-
Podczas konferencji Large Hadron Collider Physics 2020 eksperymenty ATLAS i CMS przedstawiły najnowsze wyniki dotyczące rzadkich sposobów rozpadu bozonu Higgsa produkowanego na Wielkim Zderzaczu Hadronów w CERN. Nowe kanały obejmują rozpady Higgsa na bozon Z, współodpowiedzialny za słabe oddziaływania jądrowe, oraz inną cząstkę, jak również rozpady na cząstki „niewidzialne”. Te pierwsze, w razie rozbieżności z przewidywaniami Modelu Standardowego, mogą świadczyć o zjawiskach wykraczających poza znaną nam fizykę (tzw. nowa fizyka), podczas gdy niewidzialne rozpady cząstki Higgsa rzuciłyby nowe światło na naturę cząstek tzw. ciemnej materii kosmicznej. Przedstawione analizy oparte są o całość danych zebranych w latach 2015-2018, czyli około miliarda milionów zderzeń proton-proton. Eksperyment ATLAS zmierzył częstość rozpadu Higgsa na Z i foton (γ) na 2.0+1.0−0.9 częstości przewidzianej w Modelu Standardowym, tym samym zbliżając się do czułości umożliwiającej obserwację ewentualnych odstępstw od przewidywań modelu. Eksperyment CMS poszukiwał o wiele rzadszych rozpadów na Z i mezon ρ lub φ i stwierdził, że w nie więcej niż 1.9% przypadków może nastąpić rozpad na Zρ, a nie więcej niż w 0.6% przypadków na Zφ. Obserwacja tego typu rozpadów przy obecnie zebranej ilości danych świadczyłaby o zjawiskach związanych z istnieniem nowej fizyki. Niektóre hipotezy dotyczące nowej fizyki przewidują, że bozon Higgsa może rozpadać się na dwie tzw. słabo oddziałujące masywne cząstki (ang.: WIMP), odpowiedzialne za ciemna materię kosmiczną, a niewidoczne dla aparatury eksperymentalnej. Zespół eksperymentu ATLAS wykluczył, aby prawdopodobieństwo takiego procesu przekraczało 13%. Analogiczne wykluczenie rozpadu bozonu Higgsa na parę tzw. ciemnych fotonów przedstawiła współpraca CMS. Polskie grupy z IFJ, AGH i UJ w Krakowie współtworzą zespól eksperymentu ATLAS, a grupy eksperymentalne z UW i NCBJ w Warszawie uczestniczą w eksperymencie CMS. « powrót do artykułu
-
- bozon Higgsa
- Wielki Zderzacz Hadronów
-
(i 2 więcej)
Oznaczone tagami:
-
Po sześciu latach od odkrycia bozonu Higgsa udało się zaobserwować jego rozpad na kwarki b (kwarki niskie). Zaobserwowane zjawisko jest zgodne z hipotezą mówiącą, że pole kwantowe bozonu Higgsa nadaje masę kwarkom b. Model Standardowy przewiduje, że w 60% przypadków bozon Higgsa rozpada się na kwarki b, drugie najbardziej masywne kwarki. Przetestowanie tego założenia jest niezwykle ważne, gdyż opiera się ono na hipotezie, że to właśnie bozon Higgsa nadaje masę cząstkom elementarnym. Dokonanie najnowszego odkrycia trwało aż sześć lat, gdyż zidentyfikowanie sposobu rozpadu bozonu Higgsa nie jest łatwe. Podczas wielu zderzeń proton-proton dochodzi do pojawienia się kwarków b, przez co wyizolowanie tych kwarków, które powstały wskutek rozpadu Higgsa jest bardzo trudne. Znacznie łatwiej jest wyizolować rzadsze rodzaje rozpadu Higgsa, jak na przykład jego rozpad do pary fotonów. W końcu, po sześciu latach się udało. To kamień milowy w badaniu bozonu Higgsa, mówi Karl Jakobs, rzecznik prasowy eksperymentu ATLAS. Od czasu zaobserwowania przed rokiem rozpadu bozonu Higgsa do leptonów tau zespoły pracujące przy CMS i ATLAS obserwowały, jak z bozonu Higgsa powstają najbardziej masywne fermiony: tau, kwark górny, a teraz kwark b, dodaje Joel Butler, rzecznik prasowy CMS. « powrót do artykułu
- 16 odpowiedzi
-
- bozon Higgsa
- kwark b
-
(i 1 więcej)
Oznaczone tagami:
-
Tevatron potwierdza dane Wielkiego Zderzacza Hadronów
KopalniaWiedzy.pl dodał temat w dziale Astronomia i fizyka
Przed czterema miesiącami zamknięto Tevatron, niezwykle zasłużony dla nauki akcelerator cząstek z amerykańskiego Fermilab. Jednak prowadzone w nim w przeszłości prace ciągle umożliwiają dokonywanie kolejnych odkryć. Akcelerator dostarczył olbrzymiej ilości danych, których analiza i interpretacja ciągle nie zostały zakończone. Podczas konferencji we Włoszech poinformowano, że dane z Tevatronu wskazują, iż podczas zderzeń protonów z antyprotonami pojawiały się liczne sygnały, których źródłem może być bozon Higgsa o masie pomiędzy 117-131 GeV. Statystyczne prawdopodobieństwo wynosi 2,6 sigma, co oznacza, że istnieje 0,5% szansy, iż sygnały są przypadkowe. Jest więc ono zbyt niskie, by jednoznacznie rozstrzygnąć o istnieniu bozonu w tym przedziale, jednak znaczenie odkrycia polega na tym, iż potwierdza ono obserwacje dokonane w Wielkim Zderzaczu Hadronów. Wynika z nich, że Boska Cząstka, o ile istnieje, może mieć masę około 125 gigaelektronowoltów. Dane z Tevatronu są tym cenniejsze, iż akcelerator pracował w inny sposób niż LHC i obserwował inne rodzaje rozpadu cząstek, zatem można stwierdzić, że podobne wyniki uzyskano różnymi metodami. Ponadto LHC uzyskało swoje wyniki z 5 odwrotnych femtobarnów, ale przy energii 7 teraelektronowoltów. Ilość danych z Tevatrona to 10 odwrotnych femtobarnów uzyskanych przy energii 2 TeV. W bieżącym roku, jak informowaliśmy, LHC będzie pracował z energią 8 TeV. To powinno pozwolić na uzyskanie danych o statystycznym prawdopodobieństwie wynoszącym 5 sigma. To wystarczy, by ogłosić odkrycie bozonu Higgsa. O ile, oczywiście, on istnieje. -
Podczas dzisiejszej konferencji prasowej naukowcy pracujący przy eksperymentach ATLAS i CMS Wielkiego Zderzacza Hadronów (LHC) poinformowali o stanie poszukiwań bozonu Higgsa. Z analizy danych uzyskanych przez ATLAS wynika, że masa Boskiej Cząstki - o ile w ogóle ona istnieje - znajduje się w przedziale 116-130 gigaelektronowoltów (GeV). Dane CMS wskazują na przedział 115-127 GeV. To bardzo wysoka zgodność, ale jeszcze zbyt mała by stwierdzić, że bozon Higgsa został odkryty. Poprzednia konferencja na temat poszukiwania bozonu, podczas której informowano o zakresie 114-145 GeV, odbyła się przed dwoma miesiącami. Bozon, o ile w ogóle istnieje, rozpada się niezwykle szybko. Naukowcy szukają właściwie nie samego bozonu, co śladów po jego rozpadzie. Dotychczas badano różne zakresy masy i różne rodzaje rozpadu. Wszystkie wykluczono i do sprawdzenia pozostał jeszcze dość wąski zakres energii. W przedziale 124-126 GeV zauważono bardzo interesujące sygnatury, które mogą świadczyć o istnieniu bozonu Higgsa. Wciąż jednak dysponujemy zbyt małą ilością danych, by ostatecznie potwierdzić jego znalezienie, bądź orzec, że Boska Cząstka nie istnieje. Obecnie Wielki Zderzacz Hadronów, który szczegółowo opisaliśmy we wcześniejszym artykule, nie pracuje. Zgodnie z planem jest on wyłączany w okresie zimowym. To jednak nie oznacza, że nie pracują też naukowcy. Przez najbliższe miesiące będą oni dokonywali kolejnych analiz uzyskanych danych. W marcu będzie miała miejsce kolejna konferencja dotycząca bozonu Higgsa. Na ostateczne potwierdzenie jego istnienia będziemy musieli poczekać do przyszłego roku. Istnienie bozonu Higgsa jest postulowane przez Model Standardowy, który stwierdza, że znane nam cząstki - kwarki i leptony - posiadają masę dzięki oddziaływaniu z polem Higgsa, którego nośnikami są właśnie bozony Higgsa.
- 2 odpowiedzi
-
- bozon Higgsa
- Boska Cząstka
-
(i 3 więcej)
Oznaczone tagami:
-
Niezwykła właściwość dwuwarstwowego grafenu
KopalniaWiedzy.pl dodał temat w dziale Astronomia i fizyka
Na University of California Riverside dokonano odkrycia pewnej właściwości dwuwarstwowego grafenu (BLG), które uczeni przyrównują do odkrycia bozonu Higgsa. Dwuwarstwowy grafen, podobnie jak grafen jednowarstwowy, charakteryzuje się bardzo dobrym przewodnictwem, elektrony w nim poruszają się bardzo szybko. Jednak fizycy z Kalifornii zauważyli, że gdy liczba elektronów w takim grafenie jest bliska zeru, materiał staje się izolatorem. BLG zmienia się w izolator, gdyż dochodzi do spontanicznej organizacji elektronów. Zamiast swobodnie wędrować, zaczynają poruszać się w zorganizowany sposób. Zjawisko to jest znane jako spontaniczne złamanie symetrii i ma ono olbrzymie znaczenie, gdyż u jego podstaw leżą właściwości, które powodują, że cząstki mają masę - mówi profesor Chun Ning Lau. Profesor Allan MacDonald, współautor badań, dodaje, że udało się zmierzyć masę cząstek kwantowych nowego typu, które występują tylko w kryształach BLG. Zasady fizyczne, które nadały tym cząstkom masę są bardzo bliskie zasadom, które powodują, że masa protonu w jądrze atomu jest znacznie większa niż masa kwarków, z których jest on zbudowany. Cząstka znaleziona przez nasz zespół jest zbudowana z elektronów, nie z kwarków. Warto tutaj dodać, że zespół z University of California nie działał na ślepo. Istniały teoretyczne podstawy do przypuszczeń, że w morzu elektronów w dwuwarstwowym grafenie może pojawić się nowa cząstka. Praktyczną implikacją badań jest stwierdzenie, że przerwa energetyczna w BLG zwiększa się wraz z rosnącym natężeniem pola magnetycznego. Przerwa energetyczna (pasmo wzbronione) w ciałach stałych to taki zakres energii, w którym elektrony są silnie rozpraszane, w wyniku czego nie występują elektrony o takim właśnie zakresie energii. Jej obecność decyduje o właściwościach materiału. W metalach ona nie występuje, w półprzewodnikach jest mała, w izolatorach duża. Istnienie przerwy energetycznej w krzemie pozwala na wykorzystanie go w elektronice, gdyż umożliwia przełączanie krzemu pomiędzy stanem, w którym przepływ elektronów jest możliwy, a takim, w którym jest niemożliwy. W jednowarstwowym grafenie przerwa energetyczna w naturalny sposób nie występuje, przez co zbudowane zeń urządzenie nie może być wyłączone. Z punktu widzenia zastosowań w elektronice to kolosalna wada. BLG może być za to wyłączone. Jesteśmy dopiero na początku naszych badań i na razie przerwa jest zbyt wąska, by dwuwarstwowy grafen można było zastosować w praktyce. Jednak badania dają nam olbrzymią nadzieję i wskazują na możliwe rozwiązania - grafen trójwarstwowy i czterowarstwowy, które prawdopodobnie będą miały znacznie szersze pasmo wzbronione, umożliwiające wykorzystanie ich w technologiach cyfrowych. Już zaczęliśmy badać takie materiały - mówi Lau.-
- dwuwarstwowy grafen
- BLG
-
(i 3 więcej)
Oznaczone tagami:
-
Bozon Higgsa ma już coraz mniej miejsc, w których może się ukryć. Dwa zespoły badaczy pracujące w ramach eksperymentów CMS i Atlas na Wielkim Zderzaczu Hadronów wyeliminowały około 95% procent zakresu masy, w którym może występować Boska Cząsteczka. Higgs, jeśli istnieje, znajduje się pomiędzy 114 a 145 gigaelektronowoltów - powiedział podczas konferencji Lepton-Proton profesor Vivek Sharma z Uniwersytetu Kalifornijskiego w San Diego. Naukowiec jest odpowiedzialny za prace prowadzone w ramach CMS. Naukowcy już przed kilkoma tygodniami zaobserwowali pewne sygnały, które mogą świadczyć o znalezieniu bozonu Higgsa, jednak wciąż dysponują zbyt małą ilością danych, by mieć pewność, że odkryli to, czego szukali. Wchodzimy w bardzo ekscytującą fazę poszukiwań bozonu Higgsa. Jeśli istnieje on w zakresie 114-145 GeV, to wkrótce powinniśmy zacząć otrzymywać statystycznie znaczący nadmiar sygnałów w porównaniu z sygnałami tła. A jeśli ich nie otrzymamy, to należy całkowicie wykluczyć ten zakres masy. Tak czy inaczej idziemy w kierunku wielkiego odkrycia, które prawdopodobnie nastąpi przed końcem bieżącego roku - mówi Sharma.
- 8 odpowiedzi
-
- LHC
- Wielki Zderzacz Hadronów
-
(i 2 więcej)
Oznaczone tagami:
-
Dyrektor generalny CERN-u Rolf Heuer twierdzi, że do końca 2012 roku Wielki Zderzacz Hadronów ostatecznie dowiedzie istnienia bądź nie bozonu Higgsa. Aby to sprawdzić potrzebujmy więcej danych, nawet dziesięciokrotnie więcej niż obecnie - stwierdził Heuer. Fizycy z CERN już wiedzą, że jeśli bozon Higgsa istnieje, to jego masa wynosi od 115 do 140 gigaelektronowoltów. Jeśli zostanie on znaleziony w tym zakresie, to będzie on bozonem przewidzianym w Modelu Standardowym bądź też bozonem Higgsa z teorii o supersymetrii. Bozon o masie ponad 450 GeV wykluczy supersymetrię, stwierdził Heuer. Supersymetria to zestaw teorii stwierdzających, że każda znana cząstka ma co najmniej jednego, nieznanego nam, partnera. Jeśli chodzi o bozon Higgsa to mamy dane dotyczące jego masy i kilka intrygujących fluktuacji. Prawdopodobnie masa bozonu Higgsa jest niska. Jeśli nie znajdziemy go w przedziale niskich mas, to będzie oznaczało, że Model Standardowy jest nieprawidłowy. O bozonie Higgsa wiemy wszystko, z wyjątkiem tego, czy istnieje - dodał Heuer. Uczeni z cernowskiego Compact Muon Solenoid Experiment już wcześniej poinformowali o tym, że znaleźli bozon Higgsa, jednak nie mają wystarczającej ilości danych, by to potwierdzić. Uczeni z amerykańskiego Fermilab, które korzysta z akceleratora Tevatron, również informowali o zauważeniu czegoś, co może być bozonem Higgsa. Także i oni nie są w stanie obecnie tego potwierdzić. Jeśli bozon Higgsa istnieje, to Tevatron może wkrótce zanotować wiele sygnałów świadczących o jego obecności. Biorąc pod uwagę liczbę dokonanych kolizji Tevatron jest obecnie unikatowym urządzeniem pod względem możliwości badania rozpadów bozonów Higgsa w kwarki spodnie - oświadczyli przedstawiciele Fermilab. Także i oni twierdzą, że do końca przyszłego roku będą w stanie potwierdzić lub wykluczyć istnienie Boskiej Cząstki. Przed kilkoma dniami Fermilab poinformowało o odkryciu nowej cząstki - Xi-sub-b.
- 8 odpowiedzi
-
- Fermilab
- Wielki Zderzacz Hadronów
-
(i 4 więcej)
Oznaczone tagami:
-
Pitagoras wierzył, że Wszechświat oparty jest na tej samej harmonii, co muzyka, a niebiańskie sfery grają nieustannie symfonię. Po tysiącach lat musimy mu oddać honor: fizycy pracujący w Wielkim Zderzaczu Hadronów wykorzystali go do... tworzenia muzyki z cząstek elementarnych. Wielki Zderzacz Hadronów (Large Hadron Collider, LHC) to jeden z największych eksperymentów w historii nauki. Olbrzymi cyklotron umieszczony w ośrodku CERN na granicy Francji i Szwajcarii ma na celu odkrycie nowych cząstek elementarnych, których istnienie przewidziano teoretycznie, a których nikt jeszcze nie zaobserwował. Rozpędzane do wielkich prędkości wiązki protonów zderzają się w kolistym, dwudziestosiedmiokilometrowym tunelu i rozpadają na mniejsze elementy, które z kolei rejestrowane są przez superczułą aparaturę. Dane z rejestratorów gromadzone są do dalszej analizy. Doktor Lily Asquith przetworzyła takie dane w zapis nutowy i muzykę. Cząsteczki o różnej energii, rejestrowane przez kolejne sekcje aparatu ATLAS, odpowiadają kolejnym nutom. Wykorzystano też symulację komputerową, żeby stworzyć dźwięk, jaki prawdopodobnie będzie wydawać poszukiwany bozon Higgsa - najbardziej poszukiwana cząsteczka elementarna. Wszystkie skomponowane w ten sposób utwory można znaleźć na stronie projektu, posłuchać, ściągnąć, poczytać o ich znaczeniu, a także dowolnie wykorzystać: wszystkie są dostępne na licencji Creative Commons. Są też zapisy nutowe. Sama „kosmiczna muzyka" brzmi dość awangardowo, ale przyjemnie dla ucha. Nadaje się na przykład doskonale do zilustrowania jakiegoś filmu science-fiction. Na YouTube pojawiają się już pierwsze filmy z wykorzystaniem muzyki „skomponowanej" na LHC. Dr Asquith nie chodziło jednak o zabawę, czy zwariowany teoretyczny eksperyment. Uważa ona, że w ten sposób będzie można „na słuch" rozpoznać wygenerowanie przez LHC poszukiwanej cząstki. Jej zdaniem ucho ludzkie łatwiej niż oko rozpozna charakterystyczne, poszukiwane wzory wśród wielu innych. Informatycy mogą znać anegdotę, według której podobną sztuczkę stosowano w początkach ery komputerów, kiedy zajmowały one jeszcze wielkie pomieszczenia a zamiast klawiatur i monitorów używano kart perforowanych. Inżynierowie obsługujący centra obliczeniowe podpinali często wyjście procesora do głośnika, żeby oceniać jego pracę „na słuch". Dzięki temu od razu rozpoznawali, czy napisany program wykonuje się prawidłowo, czy też się „zawiesił". Jak widać, dobre, muzykalne ucho bywa przydatne w każdej dziedzinie nauki. Oto jak może brzmieć bozon Higgsa: http://www.youtube.com/watch?v=Q0Xi6XWaIYA&hl=pl_PL&fs=1
- 4 odpowiedzi
-
Głównym celem Wielkiego Zderzacza Hadronów jest znalezienie bozonu Higgsa, czyli Boskiej Cząstki. Jednak najnowsze badania amerykańskich fizyków wskazują, że może istnieć kilka, dokładnie pięć, wersji poszukiwanego bozonu. Jeśli Amerykanie mają rację, to konieczna będzie zmiana obowiązującego obecnie Modelu Standardowego. Koncepcję istnienia wielu odmian bozonu zasugerowały wyniki eksperymentu DZero, przeprowadzonego w akceleratorze Tevatron w Fermilab. W sędziwym już Tevatronie zderzane są protony i antyprotony. W wyniku kolizji powstaje minimalnie więcej par cząstek materii od antymaterii. Ostatnie eksperymenty wykazały jednak, że w Tevatronie powstało o 1% więcej par mionów niż antymionów. Tego typu różnice znane są od dawna jako naruszenie symetrii CP. Nigdy jednak nie zaobserwowano tak dużych różnic jak w DZero. To wskazuje na istnienie czegoś więcej niż po prostu asymetrię materii i antymaterii. Takich różnic nie tłumaczy Model Standardowy. Bogdan Dobrescu, Adam Martin i Patrick J. Fox z Fermilab uważają, że tak duża asymetria może wskazywać na istnienie wielu odmian bozonu Higgsa. Ich zdaniem eksperyment sugeruje istnienie pięciu rodzajów bozonu o podobnych masach, ale różnym ładunku elektrycznym. Trzy z nich mogą być obojętne, jeden dodatni, a jeden ujemny. Teoria o istnieniu tylu bozonów istnieje już od pewnego czasu, a teraz zyskała pewne podstawy eksperymentalne. W modelu z dodatkowym dubletem Higgsa jest miejsce na wyniki, jakie uzyskaliśmy podczas eksperymentu DZero. Problemem jest natomiast uzyskanie takich wyników, bez zniszczenia tego, co zmierzono wcześniej - mówi doktor Martin. Przyznaje jednocześnie, że możliwe jest wytłumaczenie uzyskanych wyników w Modelu Standardowym. Jednak Model ten jest przez coraz większe rzesze specjalistów uznawany za niewystarczający. Teoria o dodatkowym dublecie bozonów Higgsa częściowo wpasowuje się w Model i nie wymaga wprowadzania w nim rewolucyjnych zmian.
- 10 odpowiedzi
-
- Patrick J. Fox
- Adam Martin
- (i 8 więcej)
-
Dwóch znanych fizyków, Holger Bech Nielsen z Instytutu Nielsa Bohra i Masao Ninomiya z Instytutu Fizyki Teoretycznej Yukawa, wysunęło niezwykle śmiałą teorię dotyczącą przyczyn awarii Wielkiego Zderzacza Hadronów (LHC). Ich zdaniem, został on uszkodzony... przez swoją przyszłość. Zwykle przyjmujemy, że to przeszłość wpływa na przyszłość, chociaż jeśli rozważymy przypadek podróżnika w czasie, który wraca do przeszłości i np. zabija któregoś ze swoich przodków, zauważymy, że i przyszłość może wpływać na przeszłość. Powracający bozon Higgsa byłby podobny podróżnikowi w czasie, który wędruje do przeszłości nie po to, by zabić swojego przodka, ale po to, by uratować wszechświat przed samym sobą. Obecne bozon Higgsa, zwany też Boską Cząstką, to teoretyczna cząstka elementarna, której istnienie postuluje Model Standardowy. Miała ona istnieć przez kilka sekund po Wielkim Wybuchu i dała początek materii. Mamy pewne dane sugerujące, iż teoria bozonu jest prawidłowa. A mówi ona, że cząstki elementarne, takie jak kwarki i leptony, posiadają masę dzięki temu, iż oddziałują z polem Higgsa, którego nośnikiem jest bozon Higgsa. Nielsen i Ninomiya od półtora roku publikują serię prac pod wiele mówiącymi tytułami: Search for Future Influence From LHC czy Test of Effect From Future in Large Hadron Collider: a Proposal (to ostatnia, w której opisano kontrowersyjny pomysł). Naukowcy twierdzą, że bozon Higgsa, którego znalezienie miało być jednym z zadań LHC, jest czymś tak obcym naturze, iż jego stworzenie odbije się na przeszłości i spowoduje, że Zderzacz przestanie działać, zanim będzie w stanie go wyprodukować. Nielsen i Ninomiya zaczęli publikować swoje rozważania na temat przyszłości LHC już wiosną ubiegłego roku. Kilka miesięcy później urządzenie uległo awarii. Nielsen stwierdził wówczas, że mieliśmy do czynienia z "zabawnym wydarzeniem, które mogło spowodować, że uwierzyliśmy w naszą teorię". Nielesen zauważa, że niezwykła teoria spotka się z wieloma głosami sceptycyzmu. Przypomina też, że wiele ważnych eksperymentów naukowych borykało się ze sporymi kłopotami. Jednak wraz ze swoim japońskim kolegą zaproponował CERN-owi sprawdzenie możliwości wystąpienia bardzo nieprawdopodobnego zdarzenia, takiego jak np. wyciągnięcie pika spośród 100 milionów kierów. Jeśli trafi się na taką kartę, oznaczałoby to, że LHC nie rozpocznie pracy lub też nie uda się go uruchomić z takimi energiami, by odnalazł bozon Higgsa. Teoria obu naukowców jest co najmniej niezwykła, ale Nielsen przyzwyczaił świat naukowy do tego, iż myśli niestandardowo. Jest on jednym z twórców teorii strun i jak opisał go fizyk z Caltechu Sean Carrol, jednym z tych niezwykle inteligentnych ludzi, którzy posuwają się bardzo daleko w swych szalonych pomysłach.
- 19 odpowiedzi
-
- Masao Ninomiya
- Holger Bech Nielsen
- (i 5 więcej)
-
Jednym z zadań Wielkiego Zderzacza Hadronów jest znalezienie bozonu Higgsa. LHC może jej szukać przez kilka lat i niewykluczone, że zostanie wyprzedzony przez inne, pracujące od ubiegłego roku urządzenie. Mowa tutaj o satelicie FERMI, którego zadaniem jest wykrywanie promieniowania gamma. Jednym z jego źródeł prawdopodobnie jest ciemna materia, a dokładniej proces anihilacji jej cząstek. Nie wiadomo, z czego składa się ciemna materia, jednaknaukowcy spekulują, że mogą ją tworzyć słabo oddziałujące masywne cząstki (WIMP). Istnienie WIMP przewiduje wiele teorii. W tego typu modelach cząstki tworzące ciemną materię mogą annihilować i tworzyć nowe cząstki. Na przykład dwa WIMP o masie 50-200 elektronowoltów mogą anihilować do dwóch fotonów gamma. Ale mogą też utworzyć jeden foton i jedną masywną cząstkę. Tą cząstką może być np. bozon Higgsa. Jeśli teorie są słuszne, to FERMI, który skupia się na centrum galaktyki, gdzie powinny koncentrować się cząstki ciemnej materii, powinien wykryć sygnał charakterystyczny dla promieniowania gamma. Jeśli będzie on w określony sposób zmieniony, może to być oznaką istnienia bozonu Higgsa. Zdaniem Tima Taita z University of California w Irvine, FERMI ma spore szanse trafić na bozon wcześniej niż LHC. FERMI zanotował już promieniowanie gamma z centrum Drogi Mlecznej. Dotychczas jednak dane wykorzystywano jedynie do oszacowania ilości ciemnej materii, która się tam znajduje.
- 4 odpowiedzi
-
- WIMP
- boska cząstka
-
(i 6 więcej)
Oznaczone tagami:
-
Wielki Zderzacz Hadronów (LHC) uległ ponownej awarii. Tym razem winnym jest ponoć... ptak, który upuścił kawałek niesionego przez siebie chleba. Chleb miał wpaść do naziemnych urządzeń i zablokować je, powodując przegrzanie się części Zderzacza. Początkowo zauważono przegrzewanie się urządzenia w sektorze 81. CERN twierdził jednak, że jest to wynik standardowych testów. Później jednak doktor Mike Lamont poinformował, że rzeczywiście jest jakiś problem. Po zbadaniu przyczyny awarii okazało się, że w urządzeniach tkwi kawałek chleba, najprawdopodobniej upuszczony przez ptaka. W wyniku awarii temperatura w części LHC wzrosła do niemal 8 kelvinów, podczas gdy powinna ona wynosić 1,9 kelvina. Wzrost był poważny, gdyż już w temperaturze 9,6 kelvinów może dojść do uszkodzenia niobowo-tytanowych magnesów Zderzacza. To już kolejna awaria urządzenia, które ciągle nie rozpoczęło pracy. Warto w tym miejscu przypomnieć opisywaną przez nas teorię o bozonie Higgsa, który powraca z przyszłości by nie dopuścić do uruchomienia Wielkiego Zderzacza Hadronów.
- 10 odpowiedzi
-
- bozon Higgsa
- awaria
-
(i 4 więcej)
Oznaczone tagami:
-
Naukowcy z amerykańskiego Fermi National Accelerator Laboratory, w którym znajduje się Tevatron, liczący sobie już 22 lata akcelerator cząstek, twierdzą, że istnieje 50% szansa, iż do końca bieżącego roku udowodnią istnienie bozonów Higgsa. Jak pamiętamy, ich odkrycie ma być jednym z najważniejszych osiągnięć Wielkiego Zderzacza Hadronów (LHC), który wciąż jest naprawiany i ma ruszyć pod koniec września. Swoje szacunki Amerykanie opierają na wydajności Tevatronu oraz nadziei, że maszyna jest w ogóle w stanie wykryć bozon Higgsa. Jeśli mu się to uda, ponownie przejdzie do historii nauki. Wśród dotychczasowych osiągnięć Tevatronu należy wymienić odkrycie kwarka wysokiego i zmierzenie jego masy, zaobserwowanie dwóch barionów sigma czy barionu omega. Z Modelu Standardowego wynika, że masa bozonu Higgsa wynosi od 114 do 184 gigaelektronowoltów, a więc jego wykrycie znajduje się w zasięgu Tevatronu i jest tylko kwestią czasu. Przed rokiem Fermilab wykluczyło, że masa Boskiej Cząsteczki wynosi 170 GeV i poszukuje jej po obu stronach wyznaczanych przez tę wartość. Za kilka miesięcy, jeszcze zanim LHC wystartuje, Amerykanie powinni wiedzieć, czy bozonu należy szukać w okolicach 150 GeV. Tevatron, mimo iż ma swoje lata, ma tę przewagę na LHC, że zderzane są w nim protony z antyprotonami, co produkuje znacznie mniej zakłóceń. Oczywiście oficjalnie różne laboratoria ze sobą współpracują i dzielą się wiedzą, jednak, jak możemy się domyślać i jak przyznają sami naukowcy, istnieje silne poczucie rywalizacji. Ta jest korzystna dla wszystkich, gdyż, jak mówi Dmitri Denisov z Fermilab, oni [CERN - red.] na pewno czują tę rywalizację i bardziej przykładają się do pracy.
- 8 odpowiedzi
-
- Wielki Zderzacz Hadronów
- LHC
- (i 5 więcej)
-
Wielki Zderzacz Hadronów ruszy, ale na pół gwizdka
KopalniaWiedzy.pl dodał temat w dziale Technologia
CERN poinformował, że Wielki Zderzacz Hadronów, który uległ awarii wkrótce po uruchomieniu, ponownie ruszy w październiku. Urządzenie będzie wykorzystywało jednak połowę swoich możliwości. Podczas eksperymentów cząstki będą rozpędzane tylko do 50% możliwego maksimum. To z kolei oznacza, że najdroższe urządzenie w historii badań fizycznych ma poważne problemy. Miną lata zanim LHC będzie pracował z pełną mocą. O ile w ogóle kiedykolwiek to nastąpi. Zmniejszenie energii oznacza, że trudniej będzie znaleźć np. bozon Higgsa, którego odkrycie jest jednym z głównych zadań akceleratora. Nie wiadomo, czy naukowcy będą w stanie badać ewentualne istnienie innych wymiarów, prowadzić eksperymenty z ciemną materią. LHC miał przyspieszać protony do energii 7 teraelektronowoltów (TeV). W pierwszym roku działania urządzenie będzie w stanie nadać protonom energię nie większą niż 4 TeV. W kolejnych latach będzie ona zwiększana. LHC był budowany przez 15 lat, a obecna awaria jeszcze bardziej wydłużyła czas oczekiwania na nowy instrument. Europa w pewnym stopniu już odczuła jej negatywne następstwa. Część naukowców, szczególnie młodych, którym akcelerator jest potrzebny np. do doktoratu, chciała przenieść się z USA na Stary Kontynent, by móc pracować na LHC. Teraz zdecydowali się na skorzystanie z wiekowego Tevatronu, który pracuje w Fermilab już od końca lat 80. ubiegłego wieku. Podczas trwającego od września ubiegłego roku remontu LHC wymieniono 5000 połączeń kablowych. Największe problemy stwarzają jednak magnesy. Każdy z nich musi być "wytrenowany" do pracy z coraz większym natężeniem. Dopiero po odpowiednim "treningu" mógł trafić do akceleratora. Każdy z zainstalowanych magnesów został przygotowany tak, by wytrzymywał natężenia wyższe, niż te, które są potrzebne do rozpędzenia protonów do 7 TeV. Jednak po włączeniu LHC doszło do awarii 49 magnesów w jednym z sektorów. Nie wiadomo, ile wadliwych magnesów jest w całym akceleratorze. CERN wyjaśnia, że wszystkie magnesy przed zamontowaniem spełniały stawiane wymagania, ale zanim je zainstalowano i uruchomiono, minął rok. Problem mógł więc wyniknąć z faktu, że pomiędzy "treningiem" a wykorzystaniem w Zderzaczu były one bezczynne przez 12 miesięcy. Ponowne "trenowanie" magnesów jest długotrwałe i kosztowne, nie ma więc sensu, by je powtarzać tylko po to, by LHC mógł pracować z energią 7 TeV. CERN uważa, że stosunkowo łatwo uda się uzyskać energię 6,5 TeV. Fizycy nie są tym jednak zmartwieni. Mówią, że będą zadowoleni nawet wówczas, gdy LHC nie uda się osiągnąć energii wyższej niż 5 TeV.-
- bozon Higgsa
- LHC
-
(i 2 więcej)
Oznaczone tagami: