Jump to content
Forum Kopalni Wiedzy

Search the Community

Showing results for tags 'akcelerator cząstek'.



More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Nasza społeczność
    • Sprawy administracyjne i inne
    • Luźne gatki
  • Komentarze do wiadomości
    • Medycyna
    • Technologia
    • Psychologia
    • Zdrowie i uroda
    • Bezpieczeństwo IT
    • Nauki przyrodnicze
    • Astronomia i fizyka
    • Humanistyka
    • Ciekawostki
  • Artykuły
    • Artykuły
  • Inne
    • Wywiady
    • Książki

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Adres URL


Skype


ICQ


Jabber


MSN


AIM


Yahoo


Lokalizacja


Zainteresowania

Found 5 results

  1. Tevatron, najbardziej zasłużony dla nauki akcelerator cząstek, przechodzi na emeryturę. Dzisiaj o godzinie 14 czasu miejscowego (godzina 21 czasu polskiego) Pier Oddone, dyrektor Fermilab, które zarządza Tevatronem, wyda polecenie wyłączenia akceleratora na zawsze. Zatrzymane zostaną dwie wiązki, pomiędzy którymi od 1985 roku zachodziły kolizje, umożliwiające fizykom badanie świata subatomowego. Znaczenie amerykańskiego akceleratora dla nauki trudno jest przecenić. To dzięki niemu odkryto 3 z 17 znanych cząstek elementarnych. To Tevatron był podstawowym narzędziem pracy dwóch pokoleń fizyków. Największym sukcesem w historii akceleratora było odkrycie w 1995 roku kwarka wysokiego, ostatniego z brakujących budulców materii. Decyzję o powstaniu Tevatronu podjęto w latach 70. ubiegłego wieku. Urządzenia, które powstały na jego potrzeby, takie jak nadprzewodzące magnesy, pozwoliły na pojawienie się szpitalnych maszyn do rezonansu magnetycznego. Dzięki Tevatronowi istnieje też Wielki Zderzacz Hadronów (LHC), gdyż zastosowano w nim te same technologie. Nie ma mowy o tym, by LHC mógł powstać bez Tevatronu - mówi fizyk Christopher Quigg, który w Fermilab pracuje od 1974 roku. Tevatron ma olbrzymie zasługi, ale zdaniem wielu uczonych, mógłby dokonać jeszcze więcej. Najnowsze badania wykazały, że bozon Higgsa, którego znalezienie jest jednym z głównych zadań LHC, jest w zasięgu Tevatronu. Między innymi dlatego grupa wpływowych fizyków apelowała do Departamentu Energii, do którego należy Fermilab, by akcelerator mógł pracować do roku 2014. Urzędnicy stwierdzili jednak, że utrzymanie Tevatronu pochłania zbyt dużo pieniędzy - 25 milionów dolarów rocznie - i lepiej jest przeznaczyć te fundusze na dwa nowe eksperymenty w Fermilab. Ponadto, jak zauważył dyrektor Biura Nauki Departamentu Energii, LHC ma większe możliwości niż Tevatron. W związku z zamknięciem Tevatronu z pracy w Fermilab odeszły 42 osoby, jednak reszta z 1800 pracowników pozostaje. Wyłączenie akceleratora oznacza też, że teraz to Amerykanie będą jeździli do Europy, by korzystać z LHC. Przez dwa dziesięciolecia podróże naukowców odbywały się w przeciwną stronę. Od 1985 roku z Tevatronu skorzystało 6361 fizyków, z czego 1684 było obywatelami USA. Przez najbliższe lata to LHC będzie dla fizyki tym, czym był Tevatron. Amerykańscy naukowcy mieli nadzieję, że w USA powstanie następca akceleratora z Fermilab. Zostały one zniweczone w 1993 roku, gdy Kongres nie zgodził się na dalsze finansowanie prac nad Superconducting Super Collider. Wcześniej zdążono nań wydać 2 miliardy dolarów i wydrążono 22,5 kilometra tuneli. Całkowita długość SSC miała wynosić 87 kilometrów. Obecnie USA nie mają żadnych planów dotyczących ewentualnej budowy własnego akceleratora. Niewykluczone zresztą, że tak wyjątkowy projekt jak Tevatron - duży akcelerator zbudowany przez pojedyncze państwo - nigdy nie powstanie. W dawnych czasach Stany samodzielnie zbudowały Tevatron. Ale budowa następnej takiej maszyny będzie wyglądała inaczej. Będziemy potrzebowali pomocy innych - powiedział doktor Rob Roser, dyrektor jednego z dwóch detektorów Tevatronu. Jednak w najbliższej perspektywie Roser nie widzi możliwości powstania w USA akceleratora. Na przeszkodzie stoją dwa czynniki. Po pierwsze budżety na naukę są układane z roku na rok, trudno zatem byłoby przekonać Kongres do podjęcia decyzji o finansowaniu urządzenia, którego budowa potrwałaby wiele lat i które trzeba by utrzymywać przez kolejne dziesięciolecia. Ponadto w ciągu ostatniej dekady USA wprowadziły liczne ograniczenia w podróżowaniu, co utrudniłoby wizyty naukowców z zagranicy. A to z kolei utrudni przekonanie innych rządów do partycypowania w budowie akceleratora. Dlatego przez wiele najbliższych lat to Amerykanie będą podróżowali do Europy, by pracować na LHC, którego powstanie amerykański rząd dofinansował kwotą 531 milionów dolarów. Dyrektor Oddone nie wyklucza, że tunele Tevatronu zostaną zamienione w ogólnodostępne muzeum.
  2. Dzisiaj w Wielkim Zderzaczu Hadronów (LHC) zostanie przeprowadzone próbne zderzenie dwóch wiązek o energii 3,5 TeV każda. Energia kolizji wyniesie zatem rekordowe 7 TeV. Eksperyment zostanie przeprowadzony 2 godziny później, niż pierwotnie przewidywano, gdyż wystąpiły pewne problemy z jednym z ponad 9000 nadprzewodzących magnesów. Dzisiejszy eksperyment będzie najpotężniejszym kontrolowanym zderzeniem cząstek dokonanym przez człowieka. Jednak w ciągu najbliższych miesięcy i ten rekord zostanie pobity. LHC może bowiem rozpędzić cząstki do energii 7 TeV, a więc najwyższa możliwa do uzyskania energia kolizji wyniesie 14 TeV. Eksperyment można będzie obserwować na żywo na stronach CERN-u. Zapraszamy też do zapoznania się z artykułem o budowie i możliwościach LHC.
  3. Naukowcom z Brookhaven National Laboratory udało się osiągnąć najwyższą spotykaną dotychczas temperaturę. Za pomocą akceleratora cząstek Relativistic Heavy Ion Collider (RHIC) doprowadzali oni do zderzeń jonów złota, co wywoływało eksplozje i gwałtowny wzrost temperatury. Przez kilka milisekund wynosiła ona cztery biliony stopni Celsjusza. Takie temperatury mogły panować wkrótce po Wielkim Wybuchu, a osiągnięcie z Brookhaven pozwoli uczonym badać, w jaki sposób formowała się materia. "Ta temperatura wystarczy, by stopić protony i neutrony" - mówi doktor Seven Vidgor. Dodał, że eksperyment pozwolił na dokonanie pierwszych pomiarów temperatury w plazmie kwarkowo-gluonowej. Pomiarów nie dokonywano, oczywiście, za pomocą termometrów. O temperaturze świadczył kolor światła, którą emitowała rozgrzana materia. Uczeni uważają, że przez kilka mikrosekund po Wielkim Wybuchu istniała plazma kwarkowo-gluonowa, która następnie zaczęła stygnąć, dzięki czemu uformowały się protony oraz neutrony i powstała otaczająca nas materia. Dzięki RHIC już wcześniej dokonano kilku ważnych obserwacji dotyczących materii. Zanim w 2000 roku uruchomiono akcelerator uważano, że plazma kwarkowo-gluonowa jest gazem. Jednak po analizie wyników pracy akceleratora uczeni, ku swojemu zaskoczeniu, doszli w 2005 roku do wniosku, że materia powstająca w RHIC zachowuje się jak płyn. Co więcej, jest to płyn niemal idealny, gdyż praktycznie nie posiada lepkości. Postanowiono więc zbadać właściwości tego płynu. Wspomniany na wstępie pomiar temperatury został wykonany właśnie w ramach takich badań. Odkrycia dokonane za pomocą RHIC kazały naukowcom postawić kolejne badania odnośnie kwantowej chromodynamiki, czyli teorii zajmującej się interakcją najmniejszych składowych jądra atomu. Fizycy z Brookhaven chcą w najbliższych latach udoskonalić RHIC tak, by zwiększyć liczbę zderzeń i czułość detektorów.
  4. Naukowcy z amerykańskiego Fermi National Accelerator Laboratory, w którym znajduje się Tevatron, liczący sobie już 22 lata akcelerator cząstek, twierdzą, że istnieje 50% szansa, iż do końca bieżącego roku udowodnią istnienie bozonów Higgsa. Jak pamiętamy, ich odkrycie ma być jednym z najważniejszych osiągnięć Wielkiego Zderzacza Hadronów (LHC), który wciąż jest naprawiany i ma ruszyć pod koniec września. Swoje szacunki Amerykanie opierają na wydajności Tevatronu oraz nadziei, że maszyna jest w ogóle w stanie wykryć bozon Higgsa. Jeśli mu się to uda, ponownie przejdzie do historii nauki. Wśród dotychczasowych osiągnięć Tevatronu należy wymienić odkrycie kwarka wysokiego i zmierzenie jego masy, zaobserwowanie dwóch barionów sigma czy barionu omega. Z Modelu Standardowego wynika, że masa bozonu Higgsa wynosi od 114 do 184 gigaelektronowoltów, a więc jego wykrycie znajduje się w zasięgu Tevatronu i jest tylko kwestią czasu. Przed rokiem Fermilab wykluczyło, że masa Boskiej Cząsteczki wynosi 170 GeV i poszukuje jej po obu stronach wyznaczanych przez tę wartość. Za kilka miesięcy, jeszcze zanim LHC wystartuje, Amerykanie powinni wiedzieć, czy bozonu należy szukać w okolicach 150 GeV. Tevatron, mimo iż ma swoje lata, ma tę przewagę na LHC, że zderzane są w nim protony z antyprotonami, co produkuje znacznie mniej zakłóceń. Oczywiście oficjalnie różne laboratoria ze sobą współpracują i dzielą się wiedzą, jednak, jak możemy się domyślać i jak przyznają sami naukowcy, istnieje silne poczucie rywalizacji. Ta jest korzystna dla wszystkich, gdyż, jak mówi Dmitri Denisov z Fermilab, oni [CERN - red.] na pewno czują tę rywalizację i bardziej przykładają się do pracy.
  5. Pod ziemią, przy granicy francusko-szwajcarskiej uruchomiono największy akcelerator cząstek na świecie - Wielki Zderzacz Hadronów. Dzięki niemu uczeni chcą odpowiedzieć na wiele podstawowych pytań dotyczących materii i Wszechświata. Zanim jednak do tego dojdzie, zapoznajmy się z kilkoma ciekawostkami dotyczącymi LHC, a później polecamy przeczytanie naszego artykułu na temat Zderzacza. Gdy kopano długi na 27 kilometrów tunel, w których obecnie mieści się akcelerator, jego oba końce spotkały się w określonym punkcie z dokładnością do 1 centymetra. Każdy z niobowo-tytanowych kabli tworzących uzwojenie niezwykłych magnesów LHC składa się z 6400 kabelków o grubości zaledwie 0,007 milimetra. Protony wykorzystywane w LHC pozyskiwane są z wodoru. Każdego dnia akcelerator korzysta zaledwie z 2 nanogramów tego pierwiastka. Wewnątrz rur, którymi biegną wiązki panuje ciśnienie dziesięciokrotnie mniejsze niż na powierzchni Księżyca. Każdego roku w LHC powstanie tak olbrzymia ilość danych, że do ich zapisania trzeba by zużyć 100 000 płyt DVD. Wiązki protonów przyspieszane w Wielkim Zderzaczu Hadronów będą miały energię porównywalną z energią 400-tonowego pociągu pędzącego z prędkością 150 kilometrów na godzinę. Taka ilość energii wystarczy, by stopić 500 kilogramów miedzi. Niezwykłe urządzenie, jakim jest LHC może potwierdzić wiele obecnych teorii fizycznych. Może też je obalić, a wówczas uczeni będą musieli szukać innych wyjaśnień budowy materii i kosmosu. Zapraszamy też do zapoznania się z artykułem na temat Wielkiego Zderzacza Hadronów.
×
×
  • Create New...