Search the Community
Showing results for tags 'plazma kwarkowo-gluonowa'.
Found 4 results
-
Gdy rozpędzone niemal do prędkości światła jony ołowiu lub złota wpadną na siebie w czeluściach akceleratorów, na ułamki sekund tworzy się plazma kwarkowo-gluonowa. Zdaniem naukowców z Instytutu Fizyki Jądrowej PAN w Krakowie, dane eksperymentalne wskazują, że na arenie wydarzeń są tu obecni jeszcze inni, dotychczas niedoceniani aktorzy: fotony. Ich zderzenia prowadzą do emisji pozornie nadmiarowych cząstek, których obecności nie potrafiono wyjaśnić. Plazma kwarkowo-gluonowa to bezsprzecznie najbardziej egzotyczny ze znanych nam stanów materii. W akceleratorze LHC w CERN pod Genewą tworzy się ona podczas centralnych zderzeń dwóch nadlatujących z naprzeciwka jonów ołowiu, poruszających się z prędkościami bardzo bliskimi prędkości światła. Kwarkowo-gluonowa zupa bywa też doprawiona innymi cząstkami. Niestety, opis teoretyczny przebiegu wydarzeń z udziałem plazmy oraz jej koktajlu nie w pełni odpowiadał danym zebranym w eksperymentach. W artykule opublikowanym na łamach czasopisma Physics Letters B grupa naukowców z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk w Krakowie wyjaśniła przyczynę zaobserwowanych rozbieżności. Dane zebrane w trakcie zderzeń jąder ołowiu w akceleratorze LHC, a także podczas zderzeń jąder złota w akceleratorze RHIC w Brookhaven National Laboratory koło Nowego Jorku, zaczynają się zgadzać z teorią, gdy w opisie zachodzących procesów uwzględni się zderzenia między fotonami otaczającymi oba oddziałujące ze sobą jony. Z pewnym przymrużeniem oka można powiedzieć, że przy odpowiednio wielkich energiach masywne jony zderzają się nie tylko swoimi protonami i neutronami, ale nawet swoimi chmurami fotonów, mówi dr Mariola Kłusek-Gawenda (IFJ PAN) i od razu precyzuje: Przy opisie kolizji jonów w LHC już wcześniej uwzględnialiśmy zderzenia między fotonami. Dotyczyły one jednak tylko zderzeń ultraperyferyjnych, w których jony nie trafiają w siebie, lecz mijają się niezmienione, oddziałując wyłącznie własnymi polami elektromagnetycznymi. Nikt nie przypuszczał, że zderzenia fotonów mogą odgrywać jakąkolwiek rolę w brutalnych interakcjach, gdzie protony i neutrony dosłownie zlewają się w kwarkowo-gluonową zupę. W warunkach znanych z codziennego życia fotony nie zderzają się ze sobą. Gdy jednak mamy do czynienia z masywnymi jonami rozpędzonymi niemal do prędkości światła, sytuacja staje się inna. Jądro złota zawiera 79 protonów, jądro ołowiu aż 82, ładunek elektryczny każdego jonu jest więc odpowiednio wiele razy większy od ładunku elementarnego. Nośnikami oddziaływań elektromagnetycznych są fotony, zatem każdy jon można traktować jako obiekt otoczony chmurą wielu fotonów. Co więcej, w akceleratorach RHIC i LHC jony poruszają się z prędkościami bliskimi prędkości światła. W rezultacie i one, i otaczająca je chmura fotonów, z punktu widzenia obserwatora w laboratorium sprawiają wrażenie niezwykle cienkich placków, spłaszczonych w kierunku ruchu. Z każdym przelotem takiego protonowo-neutronowego naleśnika wiąże się wyjątkowo gwałtowna oscylacja pól elektrycznego i magnetycznego. W elektrodynamice kwantowej, teorii używanej do opisu elektromagnetyzmu z uwzględnieniem zjawisk kwantowych, istnieje maksymalna wartość krytyczna pola elektrycznego, rzędu dziesięć do szesnastej woltów na centymetr. Dotyczy ona statycznych pól elektrycznych. W przypadku zderzeń masywnych jąder atomowych w RHIC czy LHC mamy do czynienia z polami dynamicznymi, pojawiającymi się na zaledwie milionowe części jednej miliardowej jednej miliardowej sekundy. Przez tak ekstremalnie krótki czas pola elektryczne w zderzeniach jonów mogą być nawet stukrotnie silniejsze od wartości krytycznej. W istocie pola elektryczne jonów zderzających się w LHC bądź RHIC są tak potężne, że pod ich wpływem powstają wirtualne fotony i dochodzi do ich zderzeń. W wyniku tych procesów w różnych punktach wokół jonów, gdzie wcześniej nie było niczego materialnego, powstają pary lepton-antylepton. Cząstki każdej pary rozbiegają się w charakterystyczny sposób: typowo w przeciwnych kierunkach i niemal prostopadle do pierwotnego kierunku ruchu jonów, wyjaśnia dr hab. Wolfgang Schäfer (IFJ PAN) i przypomina, że do rodziny leptonów są zaliczane elektrony oraz ich bardziej masywne odpowiedniki: miony i taony. Interakcje fotonów i związana z nimi produkcja par lepton-antylepton są kluczowe w zderzeniach peryferyjnych. Kolizje tego typu krakowscy fizycy opisali już kilka lat wcześniej. Ku własnemu zaskoczeniu, teraz udało się im wykazać, że te same zjawiska odgrywają niemałą rolę również w bezpośrednich zderzeniach jąder, nawet centralnych. Z danych zebranych dla jąder złota w RHIC i jąder ołowiu w LHC wynika bowiem, że podczas takich zderzeń pojawia się pewna „nadmiarowa” liczba par elektron-pozyton, które stosunkowo wolno rozbiegają się w kierunkach niemal prostopadłych do wiązek jonów. Ich istnienie udało się wyjaśnić właśnie poprzez uwzględnienie produkcji par lepton-antylepton przez zderzające się fotony. Prawdziwą wisienką na torcie okazał się dla nas fakt, że uzupełniając dotychczasowe narzędzia opisu zderzeń masywnych jonów o nasz formalizm zbudowany na tak zwanych funkcjach Wignera mogliśmy wreszcie wytłumaczyć, dlaczego detektory największych współczesnych eksperymentów akceleratorowych rejestrują takie a nie inne rozkłady leptonów i antyleptonów uciekających z miejsca kolizji jąder (dla ustalonej centralności zderzenia). Nasze rozumienie najważniejszych zachodzących tu procesów stało się bardziej kompletne, podsumowuje prof. dr hab. Antoni Szczurek (IFJ PAN). Prace nad krakowskim modelem zderzeń foton-foton sfinansowano ze środków Narodowego Centrum Nauki. Model wzbudził zainteresowanie fizyków pracujących przy detektorach ATLAS i ALICE akceleratora LHC i zostanie użyty już w najbliższych analizach danych eksperymentalnych. « powrót do artykułu
- 1 reply
-
- plazma kwarkowo-gluonowa
- fotony
-
(and 2 more)
Tagged with:
-
Naukowcy będą mogli studiować pod mikroskopem właściwości supergęstych gwiazd neutronowych, materii z momentu Wielkiego Wybuchu, czy weryfikować założenia teorii strun oraz projektować nadprzewodniki. A to wszystko dzięki zimnemu gazowi Fermiego. Gaz Fermiego to model, tzw. idealny gaz kwantowy, nazywany czasem szóstym stanem materii. John Thomas, fizyk z Duke University, wcielił ten koncept w życie, schładzając atomy litu-6 do temperatury bliskiej zeru absolutnemu (milionowe i miliardowe części Kelvina) i chwytając je w pułapkę - milimetrowej wielkości miseczkę stworzoną przez promienie lasera. Taka próbka, poddana dodatkowo działaniu odpowiednio dobranego pola magnetycznego zyskuje wyjątkowe właściwości, wśród nich niemal całkowity brak oporu podczas przepływu. To zjawisko podobne do nadciekłości, a dzieje się tak, ponieważ atomy gazu Fermiego oddziałują ze sobą tak silnie, jak tylko to możliwe. Eksperyment ma na celu zbadanie lepkości takiego gazu. Gaz Fermiego zachowuje się w różny sposób, w zależności od temperatury. Uwalniając schłodzone do miliardowych części Kelvina atomy z laserowej pułapki i chwytając ponownie wywołuje się ich drgania, które upodabniają próbkę do trzęsącej się galaretki. Mierząc oscylacje, można określić dokładnie lepkość próbki. W nieco wyższych temperaturach, rzędu milionowych części Kelvina, uwalniany gaz zmienia kształt z „cygara" na „naleśnik", z szybkością również zależną od temperatury. W tak niskich temperaturach właściwości gazu zależą od najmniejszej naturalnej podziałki, czy „linijki" - odległości pomiędzy atomami. Rozmiar ten określa skalę dla energii, temperatury, czy lepkości właśnie. Taki egzotyczny stan materii występuje w naturze, ale nie sposób go tam badać. Na przykład gwiazdy neutronowe, poza tym, że nieosiągalne, są tak gęste, że najmniejszy okruch ważyłby setki lub tysiące ton. Interesującego kosmologów stanu materii w kilka mikrosekund po Wielkim Wybuchu (plazma kwarkowo-gluonowa) również nie da się bezpośrednio badać. Stworzenie w laboratorium skalowalnego modelu niektórych właściwości tych stanów pozwoli na weryfikację różnych hipotez i założeń. Po przeprowadzeniu odpowiednich wyliczeń dla niskich temperatur będzie można ocenić również niektóre założenia teorii strun. W zastosowaniach bardziej praktycznych, płynność doskonała, jaką uzyskuje stworzony gaz Fermiego, pozwoli badać oczekiwane właściwości wysokotemperaturowych nadprzewodników. O swoim eksperymencie opowiada sam John Thomas:
- 4 replies
-
- Duke University
- John Thomas
- (and 5 more)
-
Wielki Zderzacz Hadronów kończy dzisiaj badania z użyciem protonów i przechodzi do drugiego etapu prac, podczas którego przyspieszane będą jony ołowiu. Uczonym udało się zrealizować wszystkie zadania, które miały zostać wykonane od końca marca, kiedy to uzyskano energię 7 TeV. Głównym z nich było osiągnięcie jasności, czyli częstotliwości zderzeń, rzędu 1032 na centymetr kwadratowy na sekundę. Taką jasność uzyskano 13 października, na dwa tygodnie przed początkiem drugiej fazy. Wśród uzyskanych w międzyczasie danych warto wymienić takie, które potwierdzają niektóre założenia Modelu Standardowego czy zaobserwowanie po raz pierwszy kwarka górnego powstałego w wyniku kolizji dwóch protonów. Wkrótce LHC zacznie przyspieszać jony ołowiu. Jednym z głównych zadań nowej fazy eksperymentu jest doprowadzenie do powstania plazmy kwarkowo-gluonowej i jej zbadanie. Ten rodzaj materii istniał kilka mikrosekund po Wielkim Wybuchu i z niej powstała ta materia, z którą mamy obecnie do czynienia. Badania takie pozwolą z kolei na zdobycie wielu informacji na temat oddziaływań silnych, które wiążą kwarki w protony i neutrony. Zderzenia ciężkich jonów będą wyjątkową okazją do zbadania bardzo gorącej, gęstej materii - mówi Jurgen Schukraft, rzecznik prasowy eksperymentu ALICE. LHC będzie pracował z jonami ołowiu do 6 grudnia. Następnie zostanie zatrzymany - Zderzacz ma nie pracować w zimie ze względu na swoje olbrzymie zapotrzebowanie na energię - i ponownie ruszy w lutym. Wówczas powróci do eksperymentów z protonami.
- 2 replies
-
- jony ołowiu
- proton
- (and 5 more)
-
Naukowcom z Brookhaven National Laboratory udało się osiągnąć najwyższą spotykaną dotychczas temperaturę. Za pomocą akceleratora cząstek Relativistic Heavy Ion Collider (RHIC) doprowadzali oni do zderzeń jonów złota, co wywoływało eksplozje i gwałtowny wzrost temperatury. Przez kilka milisekund wynosiła ona cztery biliony stopni Celsjusza. Takie temperatury mogły panować wkrótce po Wielkim Wybuchu, a osiągnięcie z Brookhaven pozwoli uczonym badać, w jaki sposób formowała się materia. "Ta temperatura wystarczy, by stopić protony i neutrony" - mówi doktor Seven Vidgor. Dodał, że eksperyment pozwolił na dokonanie pierwszych pomiarów temperatury w plazmie kwarkowo-gluonowej. Pomiarów nie dokonywano, oczywiście, za pomocą termometrów. O temperaturze świadczył kolor światła, którą emitowała rozgrzana materia. Uczeni uważają, że przez kilka mikrosekund po Wielkim Wybuchu istniała plazma kwarkowo-gluonowa, która następnie zaczęła stygnąć, dzięki czemu uformowały się protony oraz neutrony i powstała otaczająca nas materia. Dzięki RHIC już wcześniej dokonano kilku ważnych obserwacji dotyczących materii. Zanim w 2000 roku uruchomiono akcelerator uważano, że plazma kwarkowo-gluonowa jest gazem. Jednak po analizie wyników pracy akceleratora uczeni, ku swojemu zaskoczeniu, doszli w 2005 roku do wniosku, że materia powstająca w RHIC zachowuje się jak płyn. Co więcej, jest to płyn niemal idealny, gdyż praktycznie nie posiada lepkości. Postanowiono więc zbadać właściwości tego płynu. Wspomniany na wstępie pomiar temperatury został wykonany właśnie w ramach takich badań. Odkrycia dokonane za pomocą RHIC kazały naukowcom postawić kolejne badania odnośnie kwantowej chromodynamiki, czyli teorii zajmującej się interakcją najmniejszych składowych jądra atomu. Fizycy z Brookhaven chcą w najbliższych latach udoskonalić RHIC tak, by zwiększyć liczbę zderzeń i czułość detektorów.
- 34 replies
-
- Brookhaven National Laboratory
- akcelerator cząstek
- (and 3 more)