Search the Community
Showing results for tags 'akcelerator'.
Found 6 results
-
Fizycy potrzebują coraz potężniejszych narzędzi, by prowadzić swoje badania. Dlatego przed 2 laty Rada CERN przyjęła plan dotyczący strategii rozwoju badań nad fizyką cząstek w Europie. Zakłada on m.in. wybudowanie 100 kilometrowego akceleratora Future Circular Collider (FCC). Fizycy z CERN – Patrick Janot i Alain Blondel – argumentują, że w związku z olbrzymim zapotrzebowaniem akceleratorów na prąd, pod uwagę należy brać również ślad węglowy tych urządzeń. Na świecie rozważanych jest kilka projektów budowy potężnych akceleratorów, jednak prawdopodobnie żaden kraj nie porwie się samodzielnie na realizację takiego przedsięwzięcia. Potrzebna jest współpraca międzynarodowa i przekonanie partnerów, że to właśnie ten a nie inny projekt wart jest realizacji. Międzynarodowa społeczność fizyków zastanawia się obecnie nad budową trzech akceleratorów liniowych – International Linear Collider (ILC) w Japonii, Cool Copper Collider (C3) w USA oraz Compact Linear Collider w CERN – i dwóch kołowych – FCC i China Electron Positron Collider (CEPC) w Chinach. Naukowcy podają argumenty za konkretnymi rozwiązaniami, a Janot i Blondel postulują, by "w przyszłych projektach z dziedziny fizyki wysokich energii uwzględniać nie tylko koszt i wydajność akceleratora, ale również jego ślad węglowy na każdy uzyskany wynik naukowy", stwierdzają naukowcy. Uczeni przeprowadzili analizę postulowanych akceleratorów i stwierdzili, że najbardziej „zielonym” z nich byłby FCC. Uzyskanie w nim jednego bozonu Higgsa wymagałoby zużycia 3 MWh. Drugim najlepszym byłby CEPC z wynikiem 4,1 MWh/bozon, natomiast najgorzej wypadł C3, który do wytworzenia jednego bozonu Higgsa zużyłby aż 18 MWh. Na tym jednak analiza się nie skończyła. Naukowcy przyjrzeli się też, jak dany kraj, w którym miałby znaleźć się akcelerator, uzyskuje energię. W tej konkurencji również wygrał FCC, w którym uzyskanie pojedynczego bozonu Higgsa wiązałoby się z wyemitowaniem 0,17 tony CO2. Z kolei ILC wyemituje 9,4 tony CO2 na każdy bozon. Niska emisja z FCC wiąże się z faktem, że we Francji niemal 80% energii elektrycznej pozyskiwane jest z elektrowni atomowych. « powrót do artykułu
-
- akcelerator
- CERT
-
(and 3 more)
Tagged with:
-
Wielki Zderzacz Hadronów kończy dzisiaj badania z użyciem protonów i przechodzi do drugiego etapu prac, podczas którego przyspieszane będą jony ołowiu. Uczonym udało się zrealizować wszystkie zadania, które miały zostać wykonane od końca marca, kiedy to uzyskano energię 7 TeV. Głównym z nich było osiągnięcie jasności, czyli częstotliwości zderzeń, rzędu 1032 na centymetr kwadratowy na sekundę. Taką jasność uzyskano 13 października, na dwa tygodnie przed początkiem drugiej fazy. Wśród uzyskanych w międzyczasie danych warto wymienić takie, które potwierdzają niektóre założenia Modelu Standardowego czy zaobserwowanie po raz pierwszy kwarka górnego powstałego w wyniku kolizji dwóch protonów. Wkrótce LHC zacznie przyspieszać jony ołowiu. Jednym z głównych zadań nowej fazy eksperymentu jest doprowadzenie do powstania plazmy kwarkowo-gluonowej i jej zbadanie. Ten rodzaj materii istniał kilka mikrosekund po Wielkim Wybuchu i z niej powstała ta materia, z którą mamy obecnie do czynienia. Badania takie pozwolą z kolei na zdobycie wielu informacji na temat oddziaływań silnych, które wiążą kwarki w protony i neutrony. Zderzenia ciężkich jonów będą wyjątkową okazją do zbadania bardzo gorącej, gęstej materii - mówi Jurgen Schukraft, rzecznik prasowy eksperymentu ALICE. LHC będzie pracował z jonami ołowiu do 6 grudnia. Następnie zostanie zatrzymany - Zderzacz ma nie pracować w zimie ze względu na swoje olbrzymie zapotrzebowanie na energię - i ponownie ruszy w lutym. Wówczas powróci do eksperymentów z protonami.
- 2 replies
-
- jony ołowiu
- proton
- (and 5 more)
-
Wielki Zderzacz Hadronów (LHC) jeszcze nie osiągnął pełni mocy, a uczeni już planują budowę nowego - jeszcze droższego - akceleratora cząstek. Międzynarodowy Zderzacz Liniowy (International Linear Collider - ILC) miałby kosztować 12 miliardów USD, czyli o 3 miliardy więcej niż LHC. Długość jego tunelu ma wynieść 31 kilometrów (LHC - 27 km) i ma w nim dochodzić do 14 000 zderzeń elektronów i pozytronów w ciągu sekundy. Energia cząstek to 500 GeV (z możliwością rozbudowy do 1 TeV), czyli ma być 14-krotnie niższa niż maksymalna energia LHC. ILC, o ile powstanie, będzie najpotężniejszym akceleratorem liniowym. Obecnie tytuł ten należy do Stanford Linear Accelerator, który rozpędza cząstki do energii 50 GeV w tunelu o długości ponad 3 kilometrów. Nowy akcelerator będzie uzupełniał LHC. Ma korzystać z elektronów i pozytronów, które są znacznie lżejsze od używanych w LHC protonów. Akceleratory liniowe mają tę przewagę nad akceleratorami kołowymi, że pozwalają na bardziej precyzyjne pomiary, a więc można w nich używać mniejszych cząstek. W akceleratorach kołowych cząstki nie są tracone - te, które nie ulegną zderzeniu, krążą w tunelu. Jednak promieniowane synchrotronu powoduje, że pomiary są mniej precyzyjne. Z kolei w akceleratorach liniowych cząstki można wystrzelić precyzyjnie, z dużą energią i wykonać dokładne pomiary. Jednak te, które nie ulegną zderzeniu - przepadają. ILC nie jest jedynym planowanym akceleratorem liniowym. CERN proponuje budowę Kompaktowego Akceleratora Liniowego (Compact Linear Collider - CLIC). Ma on być znacznie krótszy od ILC, ale rozpędzać cząstki do 3 TeV z możliwością rozbudowy do 5 TeV. W chwili obecnej nie potrafimy jednak wytworzyć i bezpiecznie używać pól magnetycznych na tyle potężnych, by na krótkim odcinku zapewniły takie przyspieszenie. Na razie nie wiadomo, który z projektów - ILC czy CLIC - zostanie wybrany i zrealizowany. CERN ma jednak nadzieję, że uda się uniknąć takich problemów, jakich doświadczył LHC, na którego przestoje wydano dotychczas 40 milionów USD. Budowa nowych akceleratorów oznacza olbrzymie wydatki, ale może przynieść też spore korzyści. Niewykluczone, że przy okazji prac nad tego typu urządzeniem zostanie opracowana kolejna generacja maszyn do tomografii pozytronowej czy technologia umożliwiająca wykorzystanie promieni X lub promieniowania kosmicznego do sprawdzania zawartości kontenerów towarowych. Wiadomo, że USA sfinansują 10 do 20 procent przyszłego akceleratora. Resztę kosztów poniosą Japonia, Chiny, Rosja, Indie i kraje Unii Europejskiej. Nie wiadomo też, gdzie powstanie wybrany akcelerator. ILC chętnie widziałoby u siebie Fermilab (USA), ale zainteresowane są też Japonia, Niemcy, Rosja i Szwajcaria. Do końca 2012 roku ma być gotowy projekt ILC. Jeśli zapadnie decyzja o jego budowie, akcelerator mógłby zostać ukończony do roku 2020.
-
- Kompaktowy Zderzacz Liniowy
- CLIC
- (and 6 more)
-
Głównym celem Wielkiego Zderzacza Hadronów jest znalezienie bozonu Higgsa, czyli Boskiej Cząstki. Jednak najnowsze badania amerykańskich fizyków wskazują, że może istnieć kilka, dokładnie pięć, wersji poszukiwanego bozonu. Jeśli Amerykanie mają rację, to konieczna będzie zmiana obowiązującego obecnie Modelu Standardowego. Koncepcję istnienia wielu odmian bozonu zasugerowały wyniki eksperymentu DZero, przeprowadzonego w akceleratorze Tevatron w Fermilab. W sędziwym już Tevatronie zderzane są protony i antyprotony. W wyniku kolizji powstaje minimalnie więcej par cząstek materii od antymaterii. Ostatnie eksperymenty wykazały jednak, że w Tevatronie powstało o 1% więcej par mionów niż antymionów. Tego typu różnice znane są od dawna jako naruszenie symetrii CP. Nigdy jednak nie zaobserwowano tak dużych różnic jak w DZero. To wskazuje na istnienie czegoś więcej niż po prostu asymetrię materii i antymaterii. Takich różnic nie tłumaczy Model Standardowy. Bogdan Dobrescu, Adam Martin i Patrick J. Fox z Fermilab uważają, że tak duża asymetria może wskazywać na istnienie wielu odmian bozonu Higgsa. Ich zdaniem eksperyment sugeruje istnienie pięciu rodzajów bozonu o podobnych masach, ale różnym ładunku elektrycznym. Trzy z nich mogą być obojętne, jeden dodatni, a jeden ujemny. Teoria o istnieniu tylu bozonów istnieje już od pewnego czasu, a teraz zyskała pewne podstawy eksperymentalne. W modelu z dodatkowym dubletem Higgsa jest miejsce na wyniki, jakie uzyskaliśmy podczas eksperymentu DZero. Problemem jest natomiast uzyskanie takich wyników, bez zniszczenia tego, co zmierzono wcześniej - mówi doktor Martin. Przyznaje jednocześnie, że możliwe jest wytłumaczenie uzyskanych wyników w Modelu Standardowym. Jednak Model ten jest przez coraz większe rzesze specjalistów uznawany za niewystarczający. Teoria o dodatkowym dublecie bozonów Higgsa częściowo wpasowuje się w Model i nie wymaga wprowadzania w nim rewolucyjnych zmian.
- 10 replies
-
- Patrick J. Fox
- Adam Martin
- (and 8 more)
-
Trudno policzyć, ile ludzkich wynalazków i technologii jest kopiowaniem bądź naśladowaniem natury. Nic dziwnego, przecież pierwsi ludzie to właśnie na naturze się wzorowali. Ale okazuje się, że wielkie współczesne technologie, o których sądzimy, że są naszym oryginalnym wynalazkiem, również występują w naturze. Naszą dumę z z umiejętności przyspieszania cząstek elementarnych w akceleratorach chyba przyćmi fakt, że akceleratory w naturze występują od dawna. Do tego często tuż nad naszymi głowami. Naturalne akceleratory cząstek przebadał i opisał dr Martin Füllekrug z Wydziału Inżynierii Elektrycznej i Elektronicznej angielskiego Uniwersytetu w Bath. Odkrył on, że tworzą się one naturalnie 40 kilometrów nad ziemią podczas burz. Do swojego powstania potrzebują tylko jednego warunku: aby podczas wyładowania pioruna jednocześnie nad Ziemię dotarły wysokoenergetyczne cząstki promieniowania kosmicznego - ponad chmurami burzowymi tworzy się wówczas gigantyczny akcelerator. Jak powiedział - zdumiewające, że natura tworzy akceleratory cząstek zaledwie parę kilometrów nad naszymi głowami. Kiedy przebadamy je dokładniej, będziemy mieli znacznie lepsze pojęcie, jak dokładnie działają. W badaniach uczestniczył zespół europejskich naukowców z Danii, Francji, Hiszpanii, i Wielkiej Brytanii, a także współpracownik dra Füllekruga z amerykańskiego Narodowego Laboratorium w Los Alamos. Europejscy uczeni obserwowali obszary burzowe przy pomocy kamer, wyszukując wyładowania o mocy dostatecznie dużej, by wywołać zjawisko świecenia powietrza powyżej chmur burzowych, zwane duszkami. Niewielka część takich duszków zbiega się z przebiegiem wiązki przyspieszonych elektronów. Jak to działa? Wysokoenergetyczne promieniowanie kosmiczne wybija z molekuł powietrza elektrony, które są następnie wybijane w górę i przyspieszane przez pole elektryczne, towarzyszące wyładowaniu pioruna. Przyspieszone wolne elektrony łączą się w skoncentrowany strumień cząstek - jak w akceleratorze - i rozchodzą z troposfery (czyli najniższej warstwy atmosfery) do jej górnych części, aż do obszaru bliskiego kosmosu. Tam są więzione i zakrzywiane przez pole radiacyjne Ziemi. Te trwające mgnienie oka zjawiska niosą ze sobą energię porównywalną z mocą małej elektrowni atomowej! Dr Füllekrug wyjaśnia też, w jaki sposób je badano - sztuka polegała na tym, jak określić wysokość takiego naturalnego akceleratora cząstek, było to możliwe dzięki falom radiowym emitowanym przez wiązkę przyspieszanych elektronów. Istnienie towarzyszących zjawisku fal radiowych przewidział dr Robert Roussel-Dupré z Los Alamos, który zajmuje się symulacjami komputerowymi zjawisk. Co ciekawe, zjawisko to przewidziano teoretycznie już dawno. Szkocki naukowiec, laureat Nagrody Nobla w dziedzinie fizyki, Charles Thomson Rees Wilson wspominał o możliwości przyspieszania cząstek ponad chmurami burzowymi w wyniku wyładowań już w roku 1925. W ciągu najbliższych kilku lat pięć planowanych misji kosmicznych (satelity TARANIS, ASIM, CHIBIS, IBUKI oraz FIREFLY) będzie miało wśród swoich zadań dokładne i bezpośrednie badania przyspieszanych tak wysokoenergetycznych strumieni cząstek. Badania będą mieć istotne znaczenie, ponieważ strumienie te stanowią potencjalne zagrożenie dla satelitów. Jak powiedział autor badań: to cudowny przykład współzależności Ziemi i szerokiego Kosmosu. Wyniki badań ogłoszono 14 kwietnia na Narodowym Spotkaniu Astronomicznym Królewskiego Towarzystwa Astronomicznego (Royal Astronomical Society National Astronomy Meeting) w Glasgow.
- 5 replies
-
- Martin Füllekrug
- akcelerator
- (and 4 more)
-
CERN poinformował, że Wielki Zderzacz Hadronów, który uległ awarii wkrótce po uruchomieniu, ponownie ruszy w październiku. Urządzenie będzie wykorzystywało jednak połowę swoich możliwości. Podczas eksperymentów cząstki będą rozpędzane tylko do 50% możliwego maksimum. To z kolei oznacza, że najdroższe urządzenie w historii badań fizycznych ma poważne problemy. Miną lata zanim LHC będzie pracował z pełną mocą. O ile w ogóle kiedykolwiek to nastąpi. Zmniejszenie energii oznacza, że trudniej będzie znaleźć np. bozon Higgsa, którego odkrycie jest jednym z głównych zadań akceleratora. Nie wiadomo, czy naukowcy będą w stanie badać ewentualne istnienie innych wymiarów, prowadzić eksperymenty z ciemną materią. LHC miał przyspieszać protony do energii 7 teraelektronowoltów (TeV). W pierwszym roku działania urządzenie będzie w stanie nadać protonom energię nie większą niż 4 TeV. W kolejnych latach będzie ona zwiększana. LHC był budowany przez 15 lat, a obecna awaria jeszcze bardziej wydłużyła czas oczekiwania na nowy instrument. Europa w pewnym stopniu już odczuła jej negatywne następstwa. Część naukowców, szczególnie młodych, którym akcelerator jest potrzebny np. do doktoratu, chciała przenieść się z USA na Stary Kontynent, by móc pracować na LHC. Teraz zdecydowali się na skorzystanie z wiekowego Tevatronu, który pracuje w Fermilab już od końca lat 80. ubiegłego wieku. Podczas trwającego od września ubiegłego roku remontu LHC wymieniono 5000 połączeń kablowych. Największe problemy stwarzają jednak magnesy. Każdy z nich musi być "wytrenowany" do pracy z coraz większym natężeniem. Dopiero po odpowiednim "treningu" mógł trafić do akceleratora. Każdy z zainstalowanych magnesów został przygotowany tak, by wytrzymywał natężenia wyższe, niż te, które są potrzebne do rozpędzenia protonów do 7 TeV. Jednak po włączeniu LHC doszło do awarii 49 magnesów w jednym z sektorów. Nie wiadomo, ile wadliwych magnesów jest w całym akceleratorze. CERN wyjaśnia, że wszystkie magnesy przed zamontowaniem spełniały stawiane wymagania, ale zanim je zainstalowano i uruchomiono, minął rok. Problem mógł więc wyniknąć z faktu, że pomiędzy "treningiem" a wykorzystaniem w Zderzaczu były one bezczynne przez 12 miesięcy. Ponowne "trenowanie" magnesów jest długotrwałe i kosztowne, nie ma więc sensu, by je powtarzać tylko po to, by LHC mógł pracować z energią 7 TeV. CERN uważa, że stosunkowo łatwo uda się uzyskać energię 6,5 TeV. Fizycy nie są tym jednak zmartwieni. Mówią, że będą zadowoleni nawet wówczas, gdy LHC nie uda się osiągnąć energii wyższej niż 5 TeV.
-
- bozon Higgsa
- LHC
-
(and 2 more)
Tagged with: