Znajdź zawartość
Wyświetlanie wyników dla tagów 'Arabidopsis thaliana' .
Znaleziono 8 wyników
-
Rośliny przewidują porę dnia, kiedy napadną na nie chmary głodnych owadów i przygotowują się, by je odstraszyć, uruchamiając hormonalną broń. Kiedy przechodzisz obok roślin, nie wyglądają, jakby cokolwiek robiły. Intrygująco jest obserwować całą tę aktywność na poziomie genetycznym. To jak przyglądanie się oblężonej fortecy w stanie pełnej mobilizacji - opowiada prof. Janet Braam z Rice University, dodając, że naukowcy od dawna wiedzieli, że rośliny dysponują zegarem biologicznym, który pozwala im mierzyć czas bez względu na warunki oświetleniowe. Liście niektórych roślin podążają np. za przesuwającym się po nieboskłonie słońcem, a nocą "resetują się", zwracając się w kierunku wschodu. Ostatnimi czasy biolodzy ustalili, że aż ok. 1/3 genów rzodkiewnika pospolitego (Arabidopsis thaliana) jest aktywowanych przez rytm okołodobowy. Zastanawialiśmy się, czy niektóre z tych regulowanych rytmem okołodobowym genów mogą pozwalać na przewidywanie ataków owadów w sposób analogiczny do przewidywania świtu - opowiada Michael Covington (obecnie z Uniwersytetu Kalifornijskiego w Davis). Aby znaleźć odpowiedź na to pytanie, studentka Danielle Goodspeed zaprojektowała eksperyment. Wykorzystała 12-godzinny cykl świetlny. W ten sposób zaprogramowała zegary biologiczne roślin i gąsienic błyszczki ni (Trichoplusia ni), które żywią się liśćmi A. thaliana. Połowę roślin umieszczono z gąsienicami przyzwyczajonymi do regularnego i takiego samego jak one cyklu dzień-noc, natomiast reszta rzodkiewników stykała się z gąsienicami z przesunięciem faz - ich zegary były ustawione na dzień, który przypadał na porę będącą dla rzodkiewników nocą itd. Odkryliśmy, że rośliny wyregulowane na tę samą fazę co gąsienice błyszczki były stosunkowo oporne, natomiast okazy z przesunięciem faz ulegały zniszczeniu przez żerujące na nich gąsienice. Razem z Wassimem Chehabem Goodspeed badała akumulację hormonu jasmonianu, wykorzystywanego przez rośliny do wytwarzania metabolitów wpływających na żerowanie owadów (pod wpływem uszkodzenia mechanicznego następuje skok syntezy jasmonidów, a następnie uruchomienie biosyntezy enzymów odpowiedzialnych za gromadzenie się fitoaleksyn oraz inhibitorów proteinaz; blokują one aktywność proteinaz owadów, którym odcina się w ten sposób dostęp do białek rośliny). Naukowcy stwierdzili, że w ciągu dnia, gdy gąsienice T. ni są najbardziej napastliwe, rzodkiewniki nasilają produkcję hormonu. Okazało się, że rośliny wykorzystują zegar biologiczny do wytwarzania innych związków obronnych, np. zapobiegających infekcjom bakteryjnym.
-
Żywność, dowożona astronautom na Międzynarodowej Stacji Kosmicznej (ISS) kosztuje krocie, jak pisaliśmy niedawno, nie mówiąc o samych kosztach transportu. Co z dalszymi, załogowymi misjami, jakie są planowane w dalszej przyszłości? Będą musiały stać się przynajmniej częściowo samowystarczalne, do tego jednak wciąż za mało wiemy o hodowli roślin w warunkach kosmicznych. Dlatego na pokładzie ISS w przyszłym roku rozpocznie się kolejny naukowy eksperyment: MagISStra, mający zarazem cele edukacyjne. Paolo Nespoli, udając się na pokład stacji, zabierze ze sobą przenośną szklarnię, w której hodować będzie rzodkiewnika pospolitego (Arabidopsis thaliana) roślinę z rodziny kapustowatych, będącą modelowym gatunkiem eksperymentalnym. Oryginalnym konceptem ESA (Europejskiej Agencji Kosmicznej) jest jednoczesne prowadzenie tego samego eksperymentu przez młodzież szkolną z całej Europy. Kiełkowanie i wzrost rzodkiewnika w specjalnie zaprojektowanej miniaturowej szklarni będzie przez astronautę dokumentowany zdjęciami i filmami wideo. To samo będą robić uczniowie, którzy zgłoszą się do programu, wszyscy będą mogli dzielić się materiałami i spostrzeżeniami z zespołem ESA Human Space Flight education team, po zakończeniu dziesięciotygodniowego programu przyjdzie czas na podsumowanie i wnioski, a zespół przygotuje dodatkowe materiały edukacyjne na podstawie przeprowadzonych obserwacji. Różnice w cyklu rozwojowym tej samej rośliny na orbicie i w warunkach ziemskich dostarczą nie tylko wiedzy naukowej, ale będą miały cenny walor poznawczy na uczniów interesujących się biologią i pokrewnymi naukami. Eksperyment ruszy w lutym przyszłego roku, szkoły chcące uczestniczyć w programie mogą zamówić darmową szklarnię MagISStra na stronie edukacyjnej ESA's Human Spaceflight, ilość dostępnych egzemplarzy jest ograniczona.
-
Rośliny umieją rozpoznać rodzeństwo, a uczeni z University of Delaware zidentyfikowali mechanizm, dzięki któremu to robią. Tajemnica tkwi, i to dosłownie, w korzeniu i wydzielanych przez niego substancjach (Communicative & Integrative Biology). W 2007 roku zespół Susan Dudley z McMaster University zauważył, że po umieszczeniu w jednej doniczce sadzonki rukwieli (Cakile edentula) potrafią rozpoznać spokrewnione i obce osobniki. Z "nieznajomymi" zaczynają konkurować, na rodzeństwo, czyli rośliny pochodzące od tej samej rośliny macierzystej, zwracają natomiast większą uwagę i zostawiają mu więcej miejsca na rozrost korzeni. Prof. Harsh Bais z Delaware przeprowadził wiele badań na temat roślinnych systemów sygnałowych. Kiedy przeczytał opis kanadyjskiego studium, postanowił rozpracować mechanizm identyfikacji rodzeństwa. Rośliny nie mają widocznych znaczników, nie mogą też uciec z miejsca, gdzie zostały posadzone lub zasiane. Należało więc poszukać bardziej złożonych wzorców rozpoznawania. Bais i doktorantka Meredith Biedrzycki badali dziką populację rzodkiewnika pospolitego (Arabidopsis thaliana). Nie zdecydowano się na rośliny hodowane w laboratorium, bo te częściej są ze sobą spokrewnione. W serii eksperymentów młode sadzonki wystawiano na oddziaływanie płynnego podłoża zawierającego wydzieliny korzeni osobników "swoich" i "obcych" lub jedynie ich własne. Mierzono długość korzeni bocznych i hypokotylu – części podliścieniowej, stanowiącej strefę przejściową między korzeniem a łodygą. W jednym z eksperymentów para badaczy hamowała wydzielnictwo korzeniowe za pomocą ortowanadanu sodu, nie wpływając przy tym negatywnie na sam wzrost korzenia. Jak można się było spodziewać, kontakt z wydzielinami niespokrewnionych roślin powodował silniejszy wzrost korzeni bocznych niż kontakt z wydzielinami rodzeństwa. Po podaniu ortowanadanu sodu rozpoznawanie obcych zostało zniesione. Zajmowanie się korzeniami ponad 3 tysięcy rzodkiewników to prawdziwa syzyfowa praca. Biedrzycki tłumaczy, że u młodych roślin są one niemal przezroczyste, a po podniesieniu z podstawki często się ze sobą skręcają, więc ich mierzenie przez 7 kolejnych dni nie należało do łatwych zadań. Z podobnymi rezultatami studium powtórzono w laboratorium Dudley. Bais podkreśla, że posadzone obok siebie obce osobniki są zazwyczaj niższe, ponieważ dużo energii wkładają w konkurencyjny rozrost korzeni. Jako że z kolei rodzeństwo ze sobą tak nie współzawodniczy, system korzeniowy jest przeważnie o wiele płytszy. Co ciekawe, liście sadzonek spokrewnionych dotykają się i przeplatają, podczas gdy obcy rosną prosto do góry, unikając jakichkolwiek bezpośrednich kontaktów. W przyszłości Bais chce znaleźć odpowiedź na jeszcze kilka pytań. Zastanawia się m.in. nad losem spokrewnionych roślin w dużych monokulturach, np. polach uprawnych.
- 2 odpowiedzi
-
- Harsh Bais
- rodzeństwo
-
(i 4 więcej)
Oznaczone tagami:
-
Nowe, nieznane dotąd mechanizmy obronne roślin zostały zidentyfikowane przez badaczy z University of California. Wykorzystanie zdobytej wiedzy może posłużyć hodowcom pracującym nad stworzeniem odmian odpornych na ataki szkodników. Odkrycia dokonano podczas badania nad rzodkiewnikiem pospolitym (Arabidopsis thaliana). Naukowcy starali się zidentyfikować białka, które pozwalają temu gatunkowi na wykrywanie mikroorganizmów i blokowanie im drogi do wnętrza jego liści. Nadziemne organy rzodkiewnika są pokryte szczelną warstwą kutyny, czyli woskowatej substancji tworzącej szczelną barierę chroniącą m.in. przed inwazją mikroorganizmów i utratą wody. Ten ochronny płaszcz jest dość skuteczny, lecz utrudnia organizmowi pobieranie i odprowadzanie wody oraz wymianę gazową. Aby umożliwić wymianę kluczowych dla przeżycia substancji, na spodzie liści wytwarzane są aparaty szparkowe, czyli otwory utworzone przez pary komórek zdolnych do zmiany własnej objętości. Pęczniejąc, blokują one przepływ wody i gazów, zaś ich kurczenie prowadzi do otwarcia szczeliny. W centrum zainteresowania badaczy znalazło się białko RIN4. Od pewnego czasu wiadomo było, że bierze ono udział w mechanizmach obronnych, lecz niewiele było wiadomo na temat sposobu jego działania. Teraz okazuje się, że proteina ta, wbudowana w ścianę komórkową m.in. właśnie w aparatach szparkowych, współpracuje z aż sześcioma innymi białkami, spośród których najważniejszym wydaje się cząsteczka nazywana AHA1. Dopiero kompleks powstały z wszystkich siedmiu cząsteczek pozwala na skuteczne wykrywanie i eliminowanie zagrożenia związanego z inwazją mikroorganizmów. Te odkrycia pokazują, jak ważna jest regulacja [funkcji] aparatów szparkowych dla funkcji obronnych rzodkiewnika, tłumaczy główny autor badania, Gitta Coaker. Jej zdaniem, jeżeli okaże się, iż podobne mechanizmy funkcjonują u innych gatunków, hodowcy mogą wejść w posiadanie potężnej broni potencjalnie zwiększającej odporność roślin uprawnych na liczne patogeny.
- 1 odpowiedź
-
- aparat szparkowy
- AHA1
-
(i 5 więcej)
Oznaczone tagami:
-
Naukowcy z Uniwersytetu Nottingham donoszą o dokonaniu odkrycia, które może wyjaśniać molekularny mechanizm powstawania nowych gatunków. Jak pokazują na przykładzie roślin żyjących w naturalnych warunkach, przyczyną zjawiska może być przemieszczanie się fragmentów DNA pomiędzy różnymi fragmentami genomu. Odkrycia dokonano podczas badania rzodkiewników pospolitych (Arabidopsis thaliana) - pospolitych roślin zielnych, występujących także w Polsce. Jak dowiedli naukowcy z Uniwersytetu Nottingham, w genomach różnych odmian tego gatunku zdarza się, że pojedyncze geny zmieniają swoje położenie na niciach DNA. Efektem tych zmian może być brak zdolności do tworzenia płodnych krzyżówek osobników należących do dwóch populacji. Przyczyną komplikacji jest struktura DNA, które w typowej komórce nie składa się z jednej cząsteczki, lecz z wielu osobnych tworów zwanych chromosomami. Jeżeli jeden z nich otrzyma lub utraci duży fragment DNA, a następnie zostanie przekazany do komórek rozrodczych, powstałe w taki sposób potomstwo może wykazywać "niezgodność" informacji genetycznej pochodzącej od obojga organizmów rodzicielskich. Może to powodować albo natychmiastowe obumarcie takich krzyżowek, albo uniemożliwienie im dalszego rozmnażania. Hipotetyczną możliwość zajścia takiego zjawiska przewidywano od dawna, lecz nigdy dotąd nie udało się go zaobserwować w naturze. Przełom nastapił podczas badania osobników A. thaliana należących do dwóch odmian: Columbia (Col) oraz Cape Verde Island (Cvi). Zajmujących się rzodkiewnikami naukowców zastanawiało, dlaczego nie krzyżują się one ze sobą, mimo iż przynależność do jednego gatunku powinna gwarantować taką możliwość. Dokładne analizy wykazały, że przyczyną było właśnie przeniesienie jednego z ważnych genów pomiędzy dwoma chromosomami. Gdy rośliny ewoluują, ich geny mogą być kopiowane, przenoszone w obrębie genomu i inaktywowane. Ogranicza to ich zdolność do tworzenia płodnych krzyżówek, a także, z biegiem czasu, może zakończyć się powstaniem odrębnego gatunku. Jesteśmy zachwyceni, że nasze studium zademonstrowało to zjawisko w akcji, tłumaczy prof. Malcolm Bennett, szef zespołu badającego to zagadnienie. O swoim odkryciu badacze z Uniwersytetu Nottingham poinformowali na łamach czasopisma Science.
- 4 odpowiedzi
-
- krzyżowanie
- mutacja
-
(i 6 więcej)
Oznaczone tagami:
-
Rośliny tylko z pozoru są pasywnymi, mało "żywymi" organizmami. Kolejnego dowodu na poparcie tej tezy dostarczają amerykańscy naukowcy, który wykazali, że w wyniku infekcji korzenie aktywnie wabią odpowiednie bakterie, zdolne do zniszczenia patogenu powodującego chorobę. Badania poprowadzili wspólnie eksperci z Uniwersytetu Delaware oraz Teksańskiego Uniwersytetu Technicznego. Polegały one na analizie zachowania modelowej rośliny, rzodkiewnika (łac. Arabidopsis thaliana), podczas infekcji bakteriami z gatunku Pseudomonas syringae, pospolitego patogenu liści. W wyniku ataku mikroorganizmu liście rosliny żółkły i nabierały charakterystycznego wyglądu. Okazało się jednak, że gdy badacze po kilku dniach zaszczepili glebę wokół rośliny bakteriami Bacillus subtilis, doszło do błyskawicznego wyzdrowienia okazów rzodkiewnika. Jednocześnie zaobserwowano, że podczas infekcji szkodliwymi mikroorganizmami korzenie rośliny zaczęły wydzielać kwas jabłkowy - związek pełniący funkcję "sygnału zagrożenia" i wabiący dobroczynne bakterie do miejsca infekcji. Obserwacja zmian zachodzących podczas ataku P. syringae była możliwa dzięki wykorzystaniu dwóch zaawansowanych technik laboratoryjnych. Pierwsza z nich to uprawa hydroponiczna, czyli hodowanie roślin w roztworze substancji odżywczych, bez dostępu do gleby. Umożliwia to bardzo precyzyjne regulowanie składu pożywki, a także zapewnia możliwość stałej obserwacji korzeni i ich otoczenia. Drugą zastosowaną techniką była laserowa mikroskopia konfokalna - wyjątkowo precyzyjna technika optyczna. Zaledwie kilka instytutów badawczych na świecie może się pochwalić posiadaniem tak zaawansowanego modelu mikroskopu, jak ten zainstalowany na Uniwersytecie Delaware. Jak oceniają autorzy odkrycia, pokazuje ono, że rośliny nie są tylko pasywnymi organizmami zdanymi na łaskę i niełaskę patogenu. Rośliny są znacznie sprytniejsze, niż zwykliśmy uważać, tłumaczy dr Harsh Bais, jeden z naukowców zaangażowanych w badania. Dodaje: ludzie myślą, że rośliny, zakorzenione w glebie, są po prostu unieruchomione i bezsilne, gdy dochodzi do ataku szkodliwych grzybów lub bakterii. Odkryliśmy jednak, że rośliny posiadają sposoby na przywołanie pomocy z zewnątrz. Obecnie trwają dalsze badania, których celem będzie zdefiniowanie związków obecnych na powierzchni komórek bakterii, które odpowiadają za wywołanie odpowiedzi rzodkiewnika. Naukowcy chcą także poznać dokładny sposób przekazywania informacji z zakażonych liści od korzeni wydzielających kwas jabłkowy oraz substancji pełniących w tym procesie rolę nośnika informacji. Istnieje nadzieja, że dokładnie zrozumienie interakcji pomiędzy roślinami i sprzyjającymi im bakteriami pozwoli na "zacieśnienie" tej współpracy, co może mieć niebagatelne znaczenie przede wszystkim dla rolnictwa.
- 5 odpowiedzi
-
- Pseudomonas syringae
- Bacillus subtilis
-
(i 6 więcej)
Oznaczone tagami:
-
Umiejętne "projektowanie" enzymów odpowiedzialnych za smak i zapach mogłoby być dla ludzi bardzo przydatne. Pozwoliłoby na poprawę smaku żywności lub zwalczanie szkodników upraw w bezpieczny dla ludzi sposób. Jest to zadanie bardzo złożone, lecz naukowcy ze szkoły medycznej Uniwersytetu Teksańskiego twierdzą, że uczynili ważny krok naprzód ku jego realizacji. Eksperyment, prowadzony przez dr. C.S. Ramana, polegał na modyfikacji genetycznej rzodkiewnika (Arabidopsis thaliana) - rośliny powszechnie stosowanej w badaniach naukowych. Badacze wprowadzili zmiany w genie kodującym enzym syntazę tlenków alkenów (AOS, ang. allene oxide synthase), odpowiedzialną za produkcję związków zapachowych z grupy jasmonianów. W wyniku modyfikacji uzyskano białko o właściwościach identycznych z innym enzymem, liazą wodoronadtlenkową (HPL, ang. hydroperoxide lyase), zdolną do produkcji związków lotnych odpowiedzialnych za zapach owoców i warzyw. Przeprowadzone przez naukowców badania mają nie tylko wartość czysto poznawczą. Jak tłumaczy dr Raman, substancje wytwarzane po modyfikacji genetycznej mogą być korzystne dla roślin: pamiętajmy, że rośliny nie mogą uciec przed robakami i innymi szkodnikami. Muszą sobie z nimi radzić. Jednym ze sposobów jest wydzielanie lotnych związków wabiących naturalnych wrogów tych szkodników. Oznacza to, że możliwe jest genetyczne modyfikowanie roślin w taki sposób, by zwalczały one robaki w sposób całkowicie bezpieczny dla człowieka. Opanowanie sztuki "projektowania" enzymów pozwoli także m.in. na wydajne wytwarzanie pożądanych związków odpowiedzialnych za smak roślin mających zastosowanie w przemyśle spożywczym. Kluczem do przeprowadzenia udanej modyfikacji genetycznej były precyzyjne dane na temat struktury enzymów. Dzięki zastosowaniu technik komputerowych możliwe było zaplanowanie modyfikacji genetycznej w taki sposób, by wzajemne ułożenie atomów w cząsteczce AOS zmienić tak, by białko to nabrało właściwości enzymu HPL. Obie te proteiny są ze sobą spokrewnione - należą do grupy tzw. cytochromów P450. Enzymy z tej grupy występują także w organizmie człowieka, gdzie odpowiadają m.in. za metabolizm niemal połowy przyjmowanych przez nas leków oraz ogromnej liczby innych wchłanianych przez nasze organizmy związków. Przełożony dr. Ramana, prof. Rodney E. Kellems, podkreśla istotę odkrycia: ważną zaletą tej pracy jest zastosowanie dziedziny biologii strukturalnej i ewolucyjnej w celu pogłębienia wiedzy na temat funkcji enzymów. Wiedza ta umożliwiła nam zademonstrowanie, że zmiana pojedynczego aminokwasu [cząsteczki budulcowej wchodzącej w skład łańcucha białkowego - przyp. red.] powoduje zamianę jednego enzymu w inny. Pokazuje to, że nawet pojedyncza mutacja może wpływać na ewolucję nowych szlaków biosyntezy. Zaczynamy w ten sposób odpowiadać na pytanie, w jaki sposób pojedynczy związek może być przekształcany w zupełnie różne produkty za pomocą uderzająco podobnych do siebie enzymów. Eksperci z Uniwersytetu Teksańskiego dokonali jeszcze jednego odkrycia. Zaobserwowali, że enzymy odpowiedzialne za produkcję bardzo podobnych związków zapachowych są wytwarzane także w organizmach zwierząt morskich. Na razie nie wiadomo jednak, jaką dokładnie pełnią u nich funkcję.
- 2 odpowiedzi
-
Przytwierdzone do jednego miejsca, rośliny muszą sobie radzić ze szkodnikami i wieloma innymi problemami: zbyt dużą lub zbyt małą ilością światła, bakteriami, plagą owadów itp. Udało im się przeżyć zarówno dzięki zmianom w fizjologii, jak i w genomie. Teraz naukowcom udało się pokazać, że zdolność do zwiększania częstości mutacji genetycznych w odpowiedzi na stres jest przekazywana aż 4 kolejnym pokoleniom. Barbara Hohn z Friedrich Miescher Institute for Biomedical Research w Bazylei i jej zespół wybrali do badań kilka okazów rzodkiewnika pospolitego (Arabidopsis thaliana). Poddali je działaniu silnego promieniowania ultrafioletowego lub patogenów bakteryjnych. Rośliny przeżyły ciężką próbę dzięki zwiększeniu częstości rekombinacji homologicznych, zwanych też uprawnionymi. Taki typ rekombinacji zachodzi między 2 cząsteczkami DNA w miejscu ich całkowitej lub częściowej komplementarności. Odbywa się to w ramach przygotowań do podziału komórkowego. Co ciekawe, rośliny przekazywały zwiększoną liczbę mutacji (2-4 razy większą niż u "niestresowanych" organizmów) swojemu potomstwu, nawet jeżeli nie musiało się ono zmierzyć z promieniowaniem UV i patogenami. Cecha ta występowała też wtedy, gdy tylko jedno z rodziców (bez względu na płeć) miało styczność ze stresującymi warunkami. Zwiększona liczba mutacji nie była wynikiem przypadkowych zmian w kodzie genetycznym, gdyż cała populacja stresowanych roślin odpowiadała w podobny sposób. Ujawnione zmiany epigenetyczne mogą być wpisane w cały genom, w określone locusy [miejsca] lub transgeny badanych roślin — spekulują naukowcy w artykule prezentującym odkrycie. Opublikowano go we wczorajszym (6 sierpnia) wydaniu on-line magazynu Nature. Proponujemy, by uznać, że wpływy środowiskowe, które prowadzą do zwiększenia dynamiki genomu, nawet u następnego, niestresowanego pokolenia, mogą zwiększyć szanse na ewolucję adaptacyjną [różnicującą].