Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Podczas konferencji LithoVision 2010 wiele uwagi przyciągnęło wystąpienie przedstawicieli Intela. Z jednej strony poinformowali oni, że technologia litografii w ekstremalnie dalekim ultrafiolecie (EUV) pojawi się, jak dla niej, zbyt późno, z drugiej zaś - że dostosują obecnie używane narzędzia do produkcji 11-nanometrowych układów scalonych.

Problemy z EUV nie są dla nikogo tajemnicą. Jednak obecnie opóźnienie z wdrożeniem nowej technologii grozi komplikacjami na rynku półprzewodników. Intel miał nadzieję, że będzie w stanie wykorzystać EUV przy 22-nanometrowym procesie technologicznym, którego uruchomienie przewidziano na przyszły rok. Jednak, jak powiedział Yan Borodovsky, odpowiedzialny za zaawansowane technologie litograficzne w intelowskiej Technology and Manufacturing Group, EUV nie będzie gotowa na czas. Przynajmniej dla Intela pojawi się ona za późno.

Dlatego też koncern, który obecnie używa wyłącznie urządzeń Nikona, ma zamiar przystosować je w tych procesach technologicznych, w których miał zamiar korzystać z EUV. Intel korzysta teraz ze 193-nanometrowych "suchych" skanerów Nikona do produkcji układów w technologii 45 nanometrów, a od niedawna korzysta z podobnych maszyn do litografii zanurzeniowej. Już w ubiegłym roku firma, obawiając się, że producenci sprzętu litograficznego nie będą w stanie dostarczyć jej na czas skanerów EUV, oznajmiła, że ma zamiar przystosować 193-nanometrowe skanery zanurzeniowe do produkcji 22-nanometrowych układów. Koncern nie wykluczył też, że rozważy przystosowanie takich maszyn do 15-nanometrowego procesu produkcyjnego, który chce wdrożyć w 2013 roku. Teraz firma mówi, że zastanawia się też nad produkowaniem w ten sposób również 11-nanometrowych układów. Przedstawiciele Intela mają jednak nadzieję, że do tego czasu pojawią się już odpowiednie urządzenia EUV lub do litografii bezmaskowej i 193-nanometrowe skanery będą stanowiły jedynie uzupełnienie nowej technologii.

Na razie nie wiadomo, którą technologię wybierze Intel. Firma, by zdążyć z wdrożeniem w swoich liniach produkcyjnych skanerów EUV musi otrzymać je w 2011 lub 2012 roku. Urządzenia do litografii bezmaskowej muszą być dostępne najpóźniej w 2012 roku.

Tymczasem na pojawienie się urządzeń EUV czeka coraz więcej firm. ASML Holding NV, producent urządzeń litograficznych, poinformował właśnie, że TSMC złożył zamówienie na EUV. To spora niespodzianka, bo dotychczas TSMC odrzucało możliwość korzystania z EUV. Firma nastawiała się na litografię bezmaskową. Współpracuje ona zresztą przy jej rozwoju z firmą Mapper Lithography BV.

Na producentów urządzeń silny nacisk wywierają też inne firmy. Samsung oświadczył właśnie, że chce korzystać z technologii EUV, ale musi być ona gotowa do roku 2012. Wciąż jednak nie wiadomo, czy Nikon bądź ASML będą w stanie dostarczyć za dwa lata odpowiednie urządzenia. Na razie ASML oferuje swoim partnerom wersje "przedprodukcyjne". Producenci urządzeń do EUV wciąż zmagają się z poważnymi trudnościami. Kłopoty sprawiają zapewnienie im odpowiedniego zasilania, stworzenie fotorezystu oraz pozbawionych defektów masek.

Sporym wyzwaniem będzie też cena. Już obecnie ASML sprzedaje "przedprodukcyjne" wersje urządzeń w cenie 90 milionów dolarów za sztukę.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Intel jedynie dostosowuje maski i "przepisy" jak maja byc narzedzia wykorzystywane, ale to barkach producentow urzadzen fotolitograficznych spoczywa wykonanie dostatecznie precyzyjnych skanerow. Sama technologia to double- i triple-layer patterning. Niestety ma ona powazne wady, wiec od EUV nie ma odwrotu.

 

Poza tym Intel rowniez korzysta z maszynek ASML, jednak przewage w tej firmie ma faktycznie Nikon.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Intel ogłosił, że wybuduje w Polsce supernowoczesny zakład integracji i testowania półprzewodników. Stanie on w Miękini pod Wrocławiem, a koncern ma zamiar zainwestować w jego stworzenie do 4,6 miliarda dolarów. Inwestycja w Polsce to część obecnych i przyszłych planów Intela dotyczących Europy. Firma ma już fabrykę półprzewodników w Leixlip w Irlandii i planuje budowę drugiej w Magdeburgu w Niemczech. W sumie Intel chce zainwestować 33 miliardy euro w fabrykę w Niemczech, zakład badawczo-rozwojowo-projektowy we Francji oraz podobne przedsięwzięcia we Włoszech, Hiszpanii i Polsce.
      Zakład w Polsce ma rozpocząć pracę w 2027 roku. Zatrudnienie znajdzie w nim około 2000 osób, jednak inwestycja pomyślana została tak, by w razie potrzeby można było ją rozbudować. Koncern już przystąpił do realizacji fazy projektowania i planowania budowy, na jej rozpoczęcie będzie musiała wyrazić zgodę Unia Europejska.
      Intel już działa w Polsce i kraj ten jest dobrze przygotowany do współpracy z naszymi fabrykami w Irlandii i Niemczech. To jednocześnie kraj bardzo konkurencyjny pod względem kosztów, w którym istnieje solidna baza utalentowanych pracowników, stwierdził dyrektor wykonawczy Intela, Pat Gelsinger. Przedstawiciele koncernu stwierdzili, że Polskę wybrali między innymi ze względu na istniejącą infrastrukturę, odpowiednio przygotowaną siłę roboczą oraz świetne warunki do prowadzenia biznesu.
      Zakład w Miękini będzie ściśle współpracował z fabryką w Irlandii i planowaną fabryką w Niemczech. Będą do niego trafiały plastry krzemowe z naniesionymi elementami elektronicznymi układów scalonych. W polskim zakładzie będą one cięte na pojedyncze układy scalone, składane w gotowe chipy oraz testowane pod kątem wydajności i jakości. Stąd też będą trafiały do odbiorców. Przedsiębiorstwo będzie też w stanie pracować z indywidualnymi chipami otrzymanymi od zleceniodawcy i składać je w końcowy produkt. Będzie mogło pracować z plastrami i chipami Intela, Intel Foundry Services i innych fabryk.
      Intel nie ujawnił, jaką kwotę wsparcia z publicznych pieniędzy otrzyma od polskiego rządu. Wiemy na przykład, że koncern wciąż prowadzi negocjacje z rządem w Berlinie w sprawie dotacji do budowy fabryki w Magdeburgu. Ma być ona warta 17 miliardów euro, a Intel początkowo negocjował kwotę 6,8 miliarda euro wsparcia, ostatnio zaś niemieckie media doniosły, że firma jest bliska podpisania z Berlinem porozumienia o 9,9 miliardach euro dofinansowania. Pat Gelsinger przyznał, że Polska miała nieco więcej chęci na inwestycję Intela niż inne kraje.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Intel potwierdził, że kosztem ponad 20 miliardów dolarów wybuduje nowy kampus w stanie Ohio. W skład kampusu wejdą dwie supernowoczesne fabryki półprzewodników, gotowe do produkcji w technologii 18A. To przyszły, zapowiadany na rok 2025 proces technologiczny Intela, w ramach którego będą powstawały procesory w technologii 1,8 nm. Budowa kampusu rozpocznie się jeszcze w bieżącym roku, a produkcja ma ruszyć w 2025 roku.
      Intel podpisał też umowy partnerskie z instytucjami edukacyjnymi w Ohio. W ich ramach firma przeznaczy dodatkowo 100 milionów dolarów na programy edukacyjne i badawcze w regionie. "To niezwykle ważna wiadomość dla stanu Ohio. Nowe fabryki Intela zmienią nasz stan, stworzą tysiące wysoko płatnych miejsc pracy w przemyśle półprzewodnikowym", stwierdził gubernator Ohio, Mike DeWine.
      To największa w historii Ohio inwestycja dokonana przez pojedyncze prywatne przedsiębiorstwo. Przy budowie kampusu zostanie zatrudnionych 7000 osób, a po powstaniu pracowało w nim będzie 3000osób. Ponadto szacuje się, że inwestycja długoterminowo stworzy dziesiątki tysięcy miejsc pracy w lokalnych firmach dostawców i partnerów.
      Kampus o powierzchni około 4 km2 powstanie w hrabstwie Licking na przedmieściach Columbus. Będzie on w stanie pomieścić do 8 fabryk. Intel nie wyklucza, że w sumie w ciągu dekady zainwestuje tam 100 miliardów dolarów, tworząc jeden z największych na świecie hubów produkcji półprzewodników.
      Tak olbrzymia inwestycja przyciągnie do Ohio licznych dostawców produktów i usług dla Intela. Będzie ona miała daleko idące konsekwencje. Fabryka półprzewodników różni się od innych fabryk. Stworzenie tak wielkiego miejsca produkcji półprzewodników jest jak budowa małego miasta, pociąga za sobą powstanie tętniącej życiem społeczności wspierających dostawców usług i produktów. [...] Jednak rozmiar ekspansji Intela w Ohio będzie w dużej mierze zależał od funduszy w ramach CHIPS Act, stwierdził wiceprezes Intela ds. produkcji, dostaw i operacji, Keyvan Esfarjani.
      Nowe fabryki mają w 100% korzystać z energii odnawialnej, dostarczać do systemu więcej wody niż pobiera oraz nie generować żadnych odpadów stałych.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Firma Taiwan Semiconductor Manufacturing Co. (TSMC), największy na świecie producent układów scalonych na zlecenie, poinformowała, że wybuduje fabrykę półprzewodników w Japonii. To już druga tego typu zapowiedź w ostatnim czasie. Przed kilkoma miesiącami TSMC ogłosiła, że zainwestuje 12 miliardów dolarów w budowę nowej fabryki w Arizonie.
      Prace budowlane w Japonii rozpoczną się  przyszłym roku, a masowa produkcja chipów ma rozpocząć się w roku 2024. Japoński zakład będzie wyposażony w linie do produkcji w technologii 22 i 28 nanometrów. Będzie więc mniej zaawansowany technologicznie niż fabryka w Arizonie, gdzie powstanie 7-nanometrowa linia technologiczna. W Kraju Kwitnącej Wiśni z taśm produkcyjnych TSMC będą zjeżdżały podzespoły dla produktów konsumenckich, przemysłu samochodowego oraz Internet of Things.
      Dyrektor wykonawczy TSMC, C.C. Wei, poinformował, że firma otrzymała pomoc od japońskiego rządu i swoich japońskich klientów. Nie ujawnił wartości inwestycji, ale zrobił to premier Japonii Fumi Kishida, który poinformował parlament, że budowa pochłonie 8,8 miliarda USD, a część kosztów weźmie na siebie rząd.
      Japońska prasa dowiedziała się, że fabryka powstanie w prefekturze Kumamoto na zachodzie kraju, na ternie należącym do Sony i w pobliżu fabryki Sony, w której powstają matryce światłoczułe. Taka lokalizacja ma spory sens, gdyż Sony jest największym japońskim klientem TSMC.
      Światowy przemysł wciąż ma poważny problem z dostępnością półprzewodników. Niedawno Apple poinformował że najprawdopodobniej będzie zmuszony zmniejszyć tegoroczną produkcję iPhone'ów 13 nawet o 10 milionów sztuk. Do zmniejszenia produkcji została zmuszona też Toyota.
      Pandemia z pełną mocą ujawniła, jak bardzo producenci elektroniki z Europy, USA i Japonii są uzależnieni od chińskich, tajwańskich i południowokoreańskich producentów półprzewodników. Rozpoczęto więc działania, które mają zapobiegać tego typu sytuacjom w przyszłości. Sekretarz Handlu USA zaproponowała przeznaczenie 52 miliardów dolarów na badania nad półprzewodnikami i ich produkcję, Europa chce zwiększyć swoje możliwości produkcyjne, podobnie robi też Japonia. Na Uniwersytecie Tokijskim powołano dwie specjalne organizacje – Research Association for Advanced Systems (RAAS) oraz d.lab – których celem będzie ułatwienie wymiany technologicznej. W ramach RAAS, do której wstęp jest ograniczony, firmy takie jak TSMC, Hitachi czy Toppan mogą wymieniać się swoim know-how oraz korzystać z wyników zaawansowanych badań materiałowych, fizycznych i chemicznych prowadzonych na Uniwersytecie Tokijskim.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Tajwański gigant TSMC, podczas Technology Symposium, zdradził nieco szczegółów na temat technologii 3- i 2-nanometrowych. Układy w technologii 3 nanometrów mają zjeżdżać z fabrycznych taśm w drugiej połowie przyszłego. roku. N3 będzie wykonany w technologii FinFET, a układy te mają być o 10-15 procent bardziej wydajne niż N5 przy tym samym poborze mocy.
      Zaś przy tej samej prędkości pracy N3 będą pobierały o 25–30 procent mniej energii niż N5. N3 pozwoli na zwiększenie gęstości upakowania układów logicznych o 70%, gęstość SRAM o 20%, a podzespołów analogowych o 10%. Wydaje się też, że klienci są bardzo zainteresowani układami N3. TSMC informuje, że już w tej chwili ma 2-krotnie więcej zamówień na N3 niż w analogicznym momencie było ich na N5.
      Jednak prawdziwym skokiem technologicznym dla TSMC będzie proces technologiczny N2. Układy 2-nanometrowe nie będą korzystały z technologii FinFET. Firma wykorzysta technologię nanopowłok. To najważniejsza zmiana od lat. TSMC informuje, że tranzystory z nanopowłok charakteryzują się aż 15-procentowym spadkiem zmienności napięcia progowego (Vt) w porównaniu  z „bardzo dobrymi” tranzystorami FinFET. W przemyśle półprzewodnikowym Vt odnosi się do minimalnego napięcia wymaganego, by obwód działał i nawet najmniejsza zmienność w tym zakresie może prowadzić do problemów projektowych oraz spadku wydajności układu, wyjaśniają przedstawiciele TSMC.
      Firma potwierdziła jednocześnie swoje plany odnośnie budowy fabryki produkującej układy w technologii N2. Fabryka taka powstanie w Hsinchu na Tajwanie, a firma właśnie negocjuje zakup ziemi pod jej budowę.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po raz pierwszy w historii udało się zdobyć klucz szyfrujący, którym Intel zabezpiecza poprawki mikrokodu swoich procesorów. Posiadanie klucza umożliwia odszyfrowanie poprawki do procesora i jej analizę, a co za tym idzie, daje wiedzę o luce, którą poprawka ta łata.
      W tej chwili trudno jest ocenić rzeczywisty wpływ naszego osiągnięcia na bezpieczeństwo. Tak czy inaczej, po raz pierwszy w historii Intela udało się doprowadzić do sytuacji, gdy strona trzecia może wykonać własny mikrokod w układach tej firmy oraz przeanalizować poprawki dla kości Intela, mówi niezależny badacz Maxim Goryachy. To właśnie on wraz z Dmitrym Sklyarovem i Markiem Ermolovem, którzy pracują w firmie Positive Technolgies, wyekstrahowali klucz szyfrujący z układów Intela. Badacze poinformowali, że można tego dokonać w przypadku każdej kości – Celerona, Pentium i Atoma – opartej na mikroarchitekturze Goldmont.
      Wszystko zaczęło się trzy lata temu, gdy Goryachy i Ermolov znaleźli krytyczną dziurę Intel SA-00086, dzięki której mogli wykonać własny kod m.in. w Intel Management Engine. Intel opublikował poprawkę do dziury, jednak jako że zawsze można przywrócić wcześniejszą wersję firmware'u, nie istnieje całkowicie skuteczny sposób, by załatać tego typu błąd.
      Przed pięcioma miesiącami badaczom udało się wykorzystać tę dziurę do dostania się do trybu serwisowego „Red Unlock”, który inżynierowie Intela wykorzystują do debuggowania mikrokodu. Dzięki dostaniu się do Red Unlock napastnicy mogli
      zidentyfikować specjalny obszar zwany MSROM (microcode sequencer ROM). Wówczas to rozpoczęli trudną i długotrwałą procedurę odwrotnej inżynierii mikrokodu. Po wielu miesiącach analiz zdobyli m.in. klucz kryptograficzny służący do zabezpieczania poprawek. Nie zdobyli jednak kluczy służących do weryfikacji pochodzenia poprawek.
      Intel wydał oświadczenie, w którym zapewnia, że opisany problem nie stanowi zagrożenia, gdyż klucz używany do uwierzytelniania mikrokodu nie jest zapisany w chipie. Zatem napastnik nie może wgrać własnej poprawki.
      Faktem jest, że w tej chwili napastnicy nie mogą wykorzystać podobnej metody do przeprowadzenia zdalnego ataku na procesor Intela. Wydaje się jednak, że ataku można by dokonać, mając fizyczny dostęp do atakowanego procesora. Nawet jednak w takim przypadku wgranie własnego złośliwego kodu przyniosłoby niewielkie korzyści, gdyż kod ten nie przetrwałby restartu komputera.
      Obecnie najbardziej atrakcyjną możliwością wykorzystania opisanego ataku wydaje się hobbistyczne użycie go do wywołania różnego typu zmian w pracy własnego procesora, przeprowadzenie jakiegoś rodzaju jailbreakingu, podobnego do tego, co robiono z urządzeniami Apple'a czy konsolami Sony.
      Atak może posłużyć też specjalistom ds. bezpieczeństwa, który dzięki niemu po raz pierwszy w historii będą mogli dokładnie przeanalizować, w jaki sposób Intel poprawia błędy w swoim mikrokodzie lub też samodzielnie wyszukiwać takie błędy.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...