Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Po USA Japonia, TSMC zapowiada budowę kolejnej fabryki

Recommended Posts

Firma Taiwan Semiconductor Manufacturing Co. (TSMC), największy na świecie producent układów scalonych na zlecenie, poinformowała, że wybuduje fabrykę półprzewodników w Japonii. To już druga tego typu zapowiedź w ostatnim czasie. Przed kilkoma miesiącami TSMC ogłosiła, że zainwestuje 12 miliardów dolarów w budowę nowej fabryki w Arizonie.

Prace budowlane w Japonii rozpoczną się  przyszłym roku, a masowa produkcja chipów ma rozpocząć się w roku 2024. Japoński zakład będzie wyposażony w linie do produkcji w technologii 22 i 28 nanometrów. Będzie więc mniej zaawansowany technologicznie niż fabryka w Arizonie, gdzie powstanie 7-nanometrowa linia technologiczna. W Kraju Kwitnącej Wiśni z taśm produkcyjnych TSMC będą zjeżdżały podzespoły dla produktów konsumenckich, przemysłu samochodowego oraz Internet of Things.

Dyrektor wykonawczy TSMC, C.C. Wei, poinformował, że firma otrzymała pomoc od japońskiego rządu i swoich japońskich klientów. Nie ujawnił wartości inwestycji, ale zrobił to premier Japonii Fumi Kishida, który poinformował parlament, że budowa pochłonie 8,8 miliarda USD, a część kosztów weźmie na siebie rząd.

Japońska prasa dowiedziała się, że fabryka powstanie w prefekturze Kumamoto na zachodzie kraju, na ternie należącym do Sony i w pobliżu fabryki Sony, w której powstają matryce światłoczułe. Taka lokalizacja ma spory sens, gdyż Sony jest największym japońskim klientem TSMC.

Światowy przemysł wciąż ma poważny problem z dostępnością półprzewodników. Niedawno Apple poinformował że najprawdopodobniej będzie zmuszony zmniejszyć tegoroczną produkcję iPhone'ów 13 nawet o 10 milionów sztuk. Do zmniejszenia produkcji została zmuszona też Toyota.

Pandemia z pełną mocą ujawniła, jak bardzo producenci elektroniki z Europy, USA i Japonii są uzależnieni od chińskich, tajwańskich i południowokoreańskich producentów półprzewodników. Rozpoczęto więc działania, które mają zapobiegać tego typu sytuacjom w przyszłości. Sekretarz Handlu USA zaproponowała przeznaczenie 52 miliardów dolarów na badania nad półprzewodnikami i ich produkcję, Europa chce zwiększyć swoje możliwości produkcyjne, podobnie robi też Japonia. Na Uniwersytecie Tokijskim powołano dwie specjalne organizacje – Research Association for Advanced Systems (RAAS) oraz d.lab – których celem będzie ułatwienie wymiany technologicznej. W ramach RAAS, do której wstęp jest ograniczony, firmy takie jak TSMC, Hitachi czy Toppan mogą wymieniać się swoim know-how oraz korzystać z wyników zaawansowanych badań materiałowych, fizycznych i chemicznych prowadzonych na Uniwersytecie Tokijskim.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Urządzenia elektroniczne pracują coraz szybciej i szybciej.Jednak w pewnym momencie dotrzemy do momentu, w którym prawa fizyki nie pozwolą na dalsze ich przyspieszanie. Naukowcy z Uniwersytetu Technologicznego w Wiedniu, Uniwersytetu Technologicznego w Grazu i Instytutu Optyki Kwantowej im. Maxa Plancka w Garching określili najkrótszą skalę czasową, w której mogą pracować urządzenia optoelektroniczne.
      Podzespoły elektroniczne pracują w określonych interwałach czasowych i z sygnałami o określonej długości. Procesy kwantowo-mechaniczne, które umożliwiają wygenerowanie sygnału, trwają przez pewien czas. I to właśnie ten czas ogranicza tempo generowania i transmisji sygnału. Jego właśnie udało się określić austriacko-niemieckiemu zespołowi.
      Naukowcy, chcąc dotrzeć do granic tempa konwersji pól elektrycznych w sygnał elektryczny, wykorzystali impulsy laserowe, czyli najbardziej precyzyjne i najszybsze dostępne nam pola elektromagnetyczne. O wynikach swoich badań poinformowali na łamach Nature Communications.
      Badaliśmy materiały, które początkowo w ogóle nie przewodzą prądu, mówi profesor Joachim Burgdörfer z Instytutu Fizyki Teoretycznej Uniwersytetu Technologicznego w Wiedniu. Materiały te oświetlaliśmy ultrakrótkimi impulsami lasera pracującego w ekstremalnym ultrafiolecie. Impulsy te przełączały wzbudzały elektrony, które wchodziły na wyższy poziom energetyczny i zaczynały się swobodnie przemieszczać. W ten sposób laser zamieniał na krótko nasz materiał w przewodnik. Gdy tylko w materiale pojawiały się takie swobodne elektrony, naukowcy z pomocą drugiego, nieco dłuższego impulsu laserowego, przesuwali je w konkretnym kierunku. W ten sposób dochodziło do przepływu prądu elektrycznego, który rejestrowano za pomocą elektrod po obu stronach materiału.
      Cały proces odbywał się w skali atto- i femtosekund. Przez długi czas uważano, że zjawiska te powstają natychmiast. Jednak obecnie dysponujemy narzędziami, które pozwalają nam je precyzyjnie badać, wyjaśnia profesor Christoph Lemell z Wiednia. Naukowcy mogli więc odpowiedzieć na pytanie, jak szybko materiał reaguje na impuls lasera, jak długo trwa generowanie sygnału i jak długo sygnał ten trwa.
      Eksperyment był jednak obarczony pewną dozą niepewności związaną ze zjawiskami kwantowymi. Żeby bowiem zwiększyć tempo, konieczne były ekstremalnie krótkie impulsy lasera, by maksymalnie często dochodziło do tworzenia się wolnych elektronów. Jednak wykorzystanie ultrakrótkich impulsów oznacza, że nie jesteśmy w stanie precyzyjnie zdefiniować ilości energii, jaka została przekazana elektronom. Możemy dokładnie powiedzieć, w którym momencie w czasie dochodziło do tworzenia się ładunków, ale nie mogliśmy jednocześnie określić, w jakim stanie energetycznym one były. Ciała stałe mają różne pasma przewodzenia i przy krótkich impulsach laserowych wiele z nich jest wypełnianych wolnymi ładunkami w tym samym czacie, dodaje Lemell.
      Elektrony reagują różnie na pole elektryczne, a reakcja ta zależy od tego, jak wiele energii przenoszą. Jeśli nie znamy dokładnie tej wartości, nie możemy precyzyjnie ich kontrolować i dochodzi do zaburzeń przepływu prądu. Szczególnie przy bardzo intensywnej pracy lasera.
      Okazuje się, że górna granica możliwości kontrolowania procesów optoelektronicznych wynosi około 1 petaherca, mówi Joachim Burgdörfer. To oczywiście nie oznacza, że będziemy kiedykolwiek w stanie wyprodukować układy komputerowe z zegarami pracującymi nieco poniżej petaherca. Realistyczne możliwości technologii są zwykle znacznie niższe niż granice fizyczne. Jednak mimo tego, że nie jesteśmy w stanie pokonać praw fizyki, badania nad limitami fizycznych możliwości pozwalają na ich analizowanie, lepsze zrozumienie i udoskonalanie technologii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Intel potwierdził, że kosztem ponad 20 miliardów dolarów wybuduje nowy kampus w stanie Ohio. W skład kampusu wejdą dwie supernowoczesne fabryki półprzewodników, gotowe do produkcji w technologii 18A. To przyszły, zapowiadany na rok 2025 proces technologiczny Intela, w ramach którego będą powstawały procesory w technologii 1,8 nm. Budowa kampusu rozpocznie się jeszcze w bieżącym roku, a produkcja ma ruszyć w 2025 roku.
      Intel podpisał też umowy partnerskie z instytucjami edukacyjnymi w Ohio. W ich ramach firma przeznaczy dodatkowo 100 milionów dolarów na programy edukacyjne i badawcze w regionie. "To niezwykle ważna wiadomość dla stanu Ohio. Nowe fabryki Intela zmienią nasz stan, stworzą tysiące wysoko płatnych miejsc pracy w przemyśle półprzewodnikowym", stwierdził gubernator Ohio, Mike DeWine.
      To największa w historii Ohio inwestycja dokonana przez pojedyncze prywatne przedsiębiorstwo. Przy budowie kampusu zostanie zatrudnionych 7000 osób, a po powstaniu pracowało w nim będzie 3000osób. Ponadto szacuje się, że inwestycja długoterminowo stworzy dziesiątki tysięcy miejsc pracy w lokalnych firmach dostawców i partnerów.
      Kampus o powierzchni około 4 km2 powstanie w hrabstwie Licking na przedmieściach Columbus. Będzie on w stanie pomieścić do 8 fabryk. Intel nie wyklucza, że w sumie w ciągu dekady zainwestuje tam 100 miliardów dolarów, tworząc jeden z największych na świecie hubów produkcji półprzewodników.
      Tak olbrzymia inwestycja przyciągnie do Ohio licznych dostawców produktów i usług dla Intela. Będzie ona miała daleko idące konsekwencje. Fabryka półprzewodników różni się od innych fabryk. Stworzenie tak wielkiego miejsca produkcji półprzewodników jest jak budowa małego miasta, pociąga za sobą powstanie tętniącej życiem społeczności wspierających dostawców usług i produktów. [...] Jednak rozmiar ekspansji Intela w Ohio będzie w dużej mierze zależał od funduszy w ramach CHIPS Act, stwierdził wiceprezes Intela ds. produkcji, dostaw i operacji, Keyvan Esfarjani.
      Nowe fabryki mają w 100% korzystać z energii odnawialnej, dostarczać do systemu więcej wody niż pobiera oraz nie generować żadnych odpadów stałych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Microsoft zatrudnił byłego projektanta układów scalonych Apple'a, , który wcześniej pracował też w firmach Arm i Intel,  trafił do grupy kierowanej przez Raniego Borkara, zajmującej się rozwojem chmury Azure. Zatrudnienie Filippo wskazuje, że Microsoft chce przyspieszyć prace nad własnymi układami scalonymi dla serwerów tworzących oferowaną przez firmę chmurę. Koncern idzie zatem w ślady swoich największych rywali – Google'a i Amazona.
      Obecnie procesory do serwerów dla Azure są dostarczane przez Intela i AMD. Zatrudnienie Filippo już odbiło się na akcjach tych firm. Papiery Intela straciły 2% wartości, a AMD potaniały o 1,1%.
      Filippo rozpoczął pracę w Apple'u w 2019 roku. Wcześniej przez 10 lat był głównym projektantem układów w firmie ARM. A jeszcze wcześniej przez 5 lat pracował dla Intela. To niezwykle doświadczony inżynier. Właśnie jemu przypisuje się wzmocnienie pozycji układów ARM na rynku telefonów i innych urządzeń.
      Od niemal 2 lat wiadomo, że Microsoft pracuje nad własnymi procesorami dla serwerów i, być może, urządzeń Surface.
      Giganci IT coraz częściej starają się projektować własne układy scalone dla swoich urządzeń, a związane z pandemią problemy z podzespołami tylko przyspieszyły ten trend.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Podczas wykopalisk archeologicznych w dawnej stolicy Japonii – Kioto – znaleziono pozostałości Tokaden, wspominanego w literaturze X/XI wieku prywatnego pawilonu cesarzowej i dam dworu. Pochodzący z końca VIII wieku pawilon stanowił część cesarskiego kompleksu pałacowego. Dotychczas przeprowadzone wykopaliska sugerują, że prywatna rezydencja cesarza składała się wówczas m.in. z 17 pawilonów, i rozciągała się na 182 metry w kierunku wschód-zachód i 226 metrów w kierunku północ-południe.
      Tokaden wymieniany jest w Genji monogatari (Opowieść o Genjim, Opowieść o księciu Promienistym) z ok. 1008 roku. Autorem dzieła, napisanego dla kobiet z japońskiej arystokracji, jest Murasaki Shiibu i jest ono czasem uznawane za pierwszą nowoczesną powieść i pierwszą powieść psychologiczną. O pawilonie Tokaden możemy również przeczytać w Zapiskach spod wezgłowia, dziennikach damy dworu Sei Shōnagon. Zapiski powstały w latach 996–1010.
      Pawilon cesarzowej został odsłonięty w ramach prac prowadzonych od 2015 roku. Dzięki historycznym dokumentom archeolodzy wiedzieli, że pawilonu Tokaden należy spodziewać się w północno-zachodniej części kompleksu pałacowego, a na południe od niego stał pawilon Kokiden.
      I rzeczywiście, znaleziono tam pięć okrągłych zagłębień o średnicy 1,2–1,5 metra. Były one ułożone w kierunku północ-południe, a odległości pomiędzy nimi wynosiły od 2,1 do 3 metrów. W zagłębieniach takich ustawiano słupy podpierające budynek. Nie stosowano fundamentów. Dzięki dokumentacji z okresu Edo (1603–1867), w której znalazł się szczegółowy opis położenia pałacowych budynków, archeolodzy upewnili się, że mają do czynienia z południowo-zachodnią częścią pawilonu Tokaden. Wiemy też, że cała budowla rozciągała się na około 12 metrów na linii wschód-zachód i 27 metrów na linii północ-południe.
      Znaleziono również wiele innych wskazówek, świadczących o tym, że mamy do czynienia z prywatnym pawilonem cesarzowej. W południowo-zachodnim narożniku odkryto kamienną strukturę ułożoną w kształt litery L. Struktury takie służyły do odprowadzania wody opadowej z dachu. Podobną strukturę odkryto w północnej części pawilonu Kokiden. Zaś pomiędzy nimi znaleziono pozostałości chodnika łączącego oba pawilony. Archeolodzy uważają, że systemy odprowadzające wodę pochodzą z X wieku lub okresu późniejszego, kiedy to Tokaden został przebudowany, a wspierające go kolumny ustawiono na fundamentach.
      Dzięki odkryciu pozostałości Tokaden naukowcy musieli zweryfikować swoje przekonania dotyczące ówczesnej architektury japońskiej. Gdy w roku 794 cesarz Kammu przenosił stolicę do Kioto, zwanego wówczas Heian-kyo, kultura japońska znajdowała się pod bardzo silnym wpływem chińskiej kultury dynastii Tang. Dotychczas sądzono, że wszystkie ważniejsze budynki stawiano z wykorzystaniem kamiennych fundamentów, gdyż tak budowano w Chinach. Okazuje się jednak, że tradycyjna japońska metoda budowania bez fundamentów była wykorzystywana także w Heian-kyo.
      Stolica Japonii, czyli miejsce, gdzie znajdowała się cesarska rezydencja, wielokrotnie się zmieniała zarówno w czasach legendarnych, jak i historycznych. W końcu w roku 794 cesarz Kammu, 50. władca Japonii, przeniósł swój dwór do Heian-kyo. Tym samym w historii Kraju Kwitnącej Wiśni rozpoczął się okres Heian. To czas stosunkowo silnej władzy cesarskiej, która jednak w coraz większym stopniu była kontrolowana przez potężne klany możnowładców. Okres Heian zakończył się w 1185 roku, kiedy to klan Minamoto, po pokonaniu klanu Taira, przeniósł centrum administracyjne kraju do miasta Kamakura. Zapoczątkowało to kolejny okres w dziejach Japonii, szogunat Kamakura. Niezależnie jednak od tego, gdzie w kolejnych wiekach rezydowali sprawujący rzeczywistą władzę szogunowie, siedzibą cesarza, a przez to miastem uznawanym za stolicę, przez 1000 lat pozostawało Kioto. Zmieniło się to dopiero w roku 1868, kiedy po obaleniu szogunatu Tokugawa (1603–1868) rząd Japonii zdecydował o przeniesieniu dworu cesarskiego do stolicy Tokugawów, Edo, i zmianie nazwy miasta na Tokio.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Systemy bezprzewodowego ładowania uwalniają nas od kabli i konieczności pamiętania, gdzie zostawiliśmy ładowarkę. Wciąż jednak musimy mieć dostęp do maty czy stacji ładującej, a komercyjnie dostępne systemy zwykle ograniczają się do możliwości bezprzewodowego ładowania smartfonów czy szczoteczek elektrycznych. Jednak na Uniwersytecie Tokijskim powstał system, który pozwala na bezpieczne ładowanie urządzeń w dowolnym miejscu pomieszczenia. Co więcej, system jest skalowany do tego stopnia, że w wielkie stacje ładowania można zamieniać np. całe fabryki czy magazyny.
      Wczesne próby bezprzewodowego przesyłania energii polegały na wykorzystaniu promieniowania elektromagnetycznego np. w formie mikrofal.Jednak ich wykorzystanie jest niebezpieczne. Współcześnie technologie takie znacznie udoskonalono i to do tego stopnia, że trwają prace nad bezprzewodowym przesyłaniem energii pozyskiwanej z przestrzeni kosmicznej. Jednak tego typu systemy wymagają stosowania zespołów anten oraz złożonych urządzeń do śledzenia pozycji odbiornika.
      Znacznie bezpieczniejszym sposobem przesyłania energii jest wykorzystanie magnetycznego sprzężenia indukcyjnego. Tutaj jednak pojawia się problem gwałtownego spadku natężenia pola magnetycznego wraz z odległością. Dlatego też ładowany smartfon musi leżeć na macie ładującej lub zaraz obok niej.
      Główny autor wspomnianych badań badań, doktor Takuya Sasatani z Wydziału Inżynierii Elektrycznej i Systemów Informacyjnych oraz jego koledzy – Yoshihiro Kawahara z Uniwersytetu Tokijskiego i Alanson P. Sample z University of Michigan – opracowali technikę nazwaną kwazistatycznym rezonansem wnękowym (QSCR – uasistatic cavity  resonance). Korzysta ona z przewodzących powierzchni wbudowanych w ściany pomieszczenia oraz przewodzącym słupem na jego środku. Razem tworzą one trójwymiarowe pole magnetyczne, które ładuje urządzenia dzięki dołączonym do nich niewielkim odbiornikom. Te będzie można, oczywiście, wbudować w same urządzenia. Naukowcy wybudowali na potrzeby badań niewielki aluminiowy pokój testowy o wymiarach 3x3x2 metry i wykazali, że są w stanie zasilać w dowolnym jego miejscu smartfony, żarówki czy wentylatory. Niezależnie od tego, jak są ustawione meble czy gdzie znajdują się ludzie.
      Nasze rozwiązanie pozwala na dostarczenie dziesiątków watów mocy w dowolnym miejscu pomieszczenia. Inne technologie nie dają takich możliwości. W porównaniu z obecnie stosowanymi matami czy stacjami ładującymi, mamy tutaj pełną swobodę jeśli chodzi o pozycję ładowanego urządzenia, mówi Sasatani.
      Jednym z problemów, które musieli pokonać była likwidacja szkodliwego pola elektrycznego. Poradzili sobie z tym problemem umieszczając we wnękach w ścianach rodzaj kondensatorów, dzięki którym ich urządzenie generowało pole magnetyczne „wydobywające się” ze ścian, a pole elektryczne zostało uwięzione w kondensatorach. Kolejnym wyzwaniem było zapewnienie obecności pola magnetycznego w każdym miejscu pokoju. Badacze uzyskali to tworząc liczne pola 3D. Jedno z nich było generowane z kolumny w centrum pokoju, inne znajdowały się w rogach.
      Efektywność energetyczna takiego rozwiązania przekracza 37% w dowolnym miejscu pomieszczenia. Testy bezpieczeństwa pokazały, że system może dostarczyć do dowolnego punktu pokoju co najmniej 50 watów, bez przekraczania zaleceń dotyczących natężenia pola elektromagnetycznego. Jednak Sasatani przyznaje, że przeprowadzono bardzo wstępne badania i konieczne są bardziej szczegółowe eksperymenty, by sprawdzić, czy system jest bezpieczny.
      Mimo, że QSCR znajduje się dopiero na wstępnych etapach rozwoju, niewykluczone że w przyszłości ta lub podobne technologie zrewolucjonizują nasze życie. Dzięki nim bowiem możliwe byłoby umieszczenie komputerów, inteligentnych urządzeń czy robotów w dowolnym punkcie pomieszczenia, bez potrzeby pamiętania o ich ładowaniu. Jednym z poważnych wyzwań, przed którymi może stanąć nowa technologia jest konieczność dostosowania już istniejących pomieszczeń. O ile nowe budynki można by projektować i wznosić z myślą o użyciu ich jako wielkich bezprzewodowych ładowarek, to istniejące wymagałyby poważnych przeróbek. Sasatani jest jednak optymistą. Być może w przyszłości powstaną odpowiednie przewodzące farby i wystarczy pomalować już istniejące pomieszczenie, stwierdza.
      Szczegółowy opis technologii znajdziemy na łamach Nature Electronics.
       


      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...