Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Badania przeprowadzone przez amerykańską NOAA (National Oceanic and Atmospheric Administration) wydają się sugerować, iż Ziemia radzi sobie z globalnym ociepleniem. Spadająca zawartość pary wodnej w wyższych warstwach atmosfery może wyjaśniać, dlaczego w ciągu ostatniej dekady temperatury nie wzrosły tak bardzo jak w latach 80. i 90. ubiegłego wieku.

Prowadzone badania wykazały, że na wysokości kilkunastu kilometrów zawartość pary wodnej zmniejszyła się o 10%. Obserwacje prowadzone za pomocą satelitów i balonów pokazują, że ilość pary wodnej w stratosferze wzrastała w latach 80. i 90., a po roku 2000 zaczęła spadać. Co ciekawe, zjawisko takie zaszło na bardzo wąskim zakresie wysokości, dokładnie tam, gdzie miało najwięĸszy wpływ na klimat.

Susan Solomon, główna autorka badań, zauważa, że współczesne modele klimatyczne bardzo dokładnie oddają to, co dzieje się z parą wodną blisko powierzchni planety, tymczasem okazuje się, że należy brać po uwagę także zawartość pary wodnej w pewnym szczególnym obszarze atmosfery.

Wyliczenia Salomon pokazują, że zmniejszenie się ilości pary wodnej na wysokości około 16 kilometrów spowodowało, że temperatura Ziemi rosła o 25% wolniej, niż mogłaby, gdyby brać pod uwagę tylko i wyłącznie wzrost stężenia gazów cieplarnianych. Naukowcy podejrzewają zatem, że to właśnie z powodu wzrostu koncentracji pary wodnej w latach 90. ubiegłego wieku nasza planeta ogrzewała się o około 30% szybciej niż powinna.

Niestety, uczeni nie wiedzą, jaka jest przyczyna tak znacznych wahań w poziomie pary wodnej w stratosferze.

Share this post


Link to post
Share on other sites

Cicho, szarlatany! Al Gore wie lepiej - w końcu to noblista! A jeśli fakty mówią inaczej, to tym gorzej dla faktów!

 

:D

Share this post


Link to post
Share on other sites

Moim zdaniem nagroda nobla straciła swój prestiż wraz z uhonorowaniem Obamy pokojową wersją.

 

Niestety, uczeni nie wiedzą, jaka jest przyczyna tak znacznych wahań w poziomie pary wodnej w stratosferze.

A czemu nie podejrzewać zwykłego cyklu obiegu wody w przyrodzie?!

Share this post


Link to post
Share on other sites

Niektórzy twierdzą, że globalne ocieplenie spowoduje mrozne zimy, ponieważ

topnienie lodu na północy sprawia, że hamują prądu oceniczne (słodka woda ma inna gęstość od słonej i zaburza to procesy związane z tworzeniem się prądu). Program o tym można znaleźć na Youtubach wyszukując "National Geographic Wielkie Mrozy".

Share this post


Link to post
Share on other sites

A więc nawet ochłodzenie można nazwać ociepleniem, byle tylko dalej wyciągać od podatników kasę. I nikt nas nie przekona, że białe jest białe, a czarne jest czarne!

Share this post


Link to post
Share on other sites

Z tej informacji RÓWNIEŻ wyraźnie wynika, że mamy do czynienia z ociepleniem.

Temu chyba nie da się zaprzeczyć. Pytanie brzmi: dlaczego Ziemia się ociepla. I o to toczy się spór.

Share this post


Link to post
Share on other sites

Akurat od paru lat Ziemia powoli, ale jednak stygnie :D Poza tym mnie osobiście bardziej przekonuje niedawna notka dot. freonów.

Share this post


Link to post
Share on other sites

Dokładnie!!! Jest tysiące innych, bardziej szkodliwych substancji, ale CO2 to sposób na zarabianie kasy, więc w mediach tylko o tym się słyszy.

Share this post


Link to post
Share on other sites

A więc nawet ochłodzenie można nazwać ociepleniem,

 

No rzeczywiscie, moze sie okazac ze caly ten proces zmiany skladu atmosfery spowodowany przez czlowieka, spowoduje zwiekszona ilosc opadow i spadek temperatury, przynajmniej przy gruncie, a nazwa "globalne ocieplenie" zostanie. Potem przyjdzie w wyniku "ocieplenia" lodowiec :D

Przyszle pokolenia beda zachodzily w glowe, o co chodzilo tym naukowcom ;)

Share this post


Link to post
Share on other sites

Kto się orientuje w temacie to wie. Ochrona przed zmianami klimatu - miliardy dolarów. Widok lodowca spychającego Skandynawię do Bałtyku- bezcenny :D

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Ziemia jest bliżej supermasywnej centralnej czarnej dziury – Sagittariusa A* – naszej galaktyki i porusza się szybciej niż dotychczas sądzono. Tak wynika z nowej mapy sporządzonej na podstawie ponad 15-letnich badań prowadzonych przez japoński projekt astronomiczny VERA.
      VERA (VLBI Exploration of Radio Astrometry) wystartował w 2000 roku. Głównym zadaniem projektu jest określenie struktury przestrzennej i prędkości obiektów w Drodze Mlecznej. Naukowcy wykorzystują technikę interferometrii, która pozwala połączyć dane z różnych radioteleskopów znajdujących się w Japonii i uzyskać obraz o takiej rozdzielczości, jak z jednego radioteleskopu o średnicy 2300 kilometrów. Uzyskano w ten sposób rozdzielczość wynoszącą 10 mikrosekund kątowych. To rozdzielczość wystarczająca, by – przynajmniej teoretycznie – dostrzec z Ziemi 2-złotówkę leżącą na powierzchni Księżyca.
      Jako, że Ziemia znajduje się wewnątrz Drogi Mlecznej, nie możemy badać naszej galaktyki z zewnątrz. Żeby zrozumieć strukturę Drogi Mlecznej musimy posłużyć się astrometrią, dokładnymi pomiarami pozycji i ruchu obiektów w naszej galaktyce. Dzięki temu jesteśmy w stanie odtworzyć jej trójwymiarową strukturę.  Właśnie opublikowano First VERA Astrometry Catalog, w którym znajdują się dokładne dane dotyczące 99 obiektów Drogi Mlecznej.
      Dzięki temu dowiedzieliśmy się właśnie, że Ziemia porusza się wokół centrum Drogi Mlecznej z prędkością 227 km/s, czyli o 7 km/s szybciej, niż sądziliśmy. Jest też o 2000 lat świetlnych bliżej Sagittariusa A*. Od centralnej czarnej dziury dzieli nas zatem 25 800 lat świetlnych, a nie 27 700 lat świetlnych.
      Teraz VERA obserwuje kolejne obiekty, szczególnie te znajdujące się blisko czarnej dziury. Projekt VERA przystąpił też do programu EAVN (East Asian VLBI Network), w ramach którego współpracują ze sobą radioteleskopy w Japonii, Korei Południowej i Chin. Dzięki zwiększeniu liczby urządzeń oraz odległości pomiędzy nimi EAVN osiągnie większą rozdzielczość niż VERA i dostarczy jeszcze bardziej dokładnych danych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zwykle zastanawiamy się, ile pozasłonecznych planet zawierających życie jesteśmy w stanie zaobserwować z Ziemi. Jednak pytanie to można odwrócić. I właśnie to zrobili profesorowie Lisa Kaltenegger z Cornell University i Joshua Pepper z Lehigh University. Postanowili oni zbadać, z ilu układów planetarnych można bezpośrednio obserwować Ziemię. Innymi słowy, ile potencjalnych cywilizacji pozaziemskich, znajdujących się na podobnym etapie rozwoju, może nas badać.
      Uczeni zidentyfikowali 1004 gwiazdy ciągu głównego, czyli dość podobne do Słońca, które mogą posiadać podobne do Ziemi planety w ekosferze. Wszystkie wspomniane gwiazdy znajdują się w promieniu 300 lat świetlnych od Ziemi, zatem w odległości, z której obca cywilizacja powinna być w stanie wykryć chemiczne sygnatury życia w ziemskiej atmosferze.
      Odwróćmy nasz punkt widzenia. Przenieśmy się na inne planety i zapytajmy, z których układów planetarnych można obserwować tranzyty Ziemi na tle Słońca, mówi Kaltenegger. Uczona przypomina, że obserwowanie tranzytów to kluczowy sposób obserwowania planet pozasłoneczych i określania ich cech charakterystycznych. Już wkrótce, dzięki Teleskopowi Kosmicznemu Jamesa Webba (JWST), będziemy w stanie – badając tranzyty – określać skład chemiczny atmosfer planet spoza Układu Słonecznego. Jeśli z naszego punktu widzenia jakaś planeta przechodzi na tle swojej gwiazdy, zatem znajduje się w linii prostej pomiędzy swoją gwiazdą a Ziemią, to już teraz – badając zmianę jasności gwiazdy przesłoniętej przez planetę – próbujemy określać np. wielkość planety. Instrument taki jak JWST pozwoli badać światło gwiazdy przechodzące przez atmosferę planety i określić skład chemiczny tej planety. Będziemy więc mogli wykrywać w niej molekuły i inne elementy wskazujące na istnienie życia. To samo jednak mogą robić potencjalne cywilizacje pozaziemskie.
      Jedynie niewielki ułamek egzoplanet przechodzi na tle swojej gwiazdy z naszego punktu widzenia. Z punktu widzenia wszystkich zidentyfikowanych przez nas układów Ziemia przechodzi na tle Słońca. A to powinno przyciągnąć uwagę potencjalnych obserwatorów. Jeśli poszukujemy inteligentnego życia, które może nas znaleźć i zechcieć nawiązać kontakt, to właśnie stworzyliśmy mapę, gdzie należy szukać, dodaje Kaltenegger.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Amerykańsko-niemiecki zespół naukowcy zidentyfikował 24 planety, które mogą lepiej nadawać się do życia niż Ziemia. Są wśród nich starsze, nieco większe, nieco cieplejsze i prawdopodobnie bardziej wilgotne od Ziemi. Uczeni stwierdzają również, że życie może łatwiej rozwijać się na planetach, które wolniej niż Ziemia krążą wokół gwiazd starszych od Słońca.
      Wszystkie ze zidentyfikowanych planet znajdują się w odległości większej niż 100 lat świetlnych od Ziemi, a ich zidentyfikowanie pozwoli w przyszłości skupić się na nich w poszukiwaniu śladów życia pozaziemskiego. Planety takie mogłyby być szczegółowo badane za pomocą Teleskopu Kosmicznego Jamesa Webba, obserwatoriów LUVIOR czy PLATO.
      Przyszłe teleskopy kosmiczne pozwolą na zdobycie kolejnych danych, dzięki czemu lepiej wybierzemy kandydatów do dalszych badań. Musimy skupić się na tych planetach, które posiadają najbardziej obiecujące warunki do powstania życia. Powinniśmy jednak uważać, by nie utknąć na poszukiwaniach drugiej Ziemi, gdyż mogą istnieć planety zdolne do podtrzymania życia innego niż znamy, mówi profesor Schulze-Makuch z Washington State University i Uniwersytetu Technicznego w Berlinie.
      Gwiazdy takie jak Słońce żyją około 10 miliardów lat. Jako, że na Ziemi bardziej złożone formy życia powstały dopiero po 4 miliardach lat, wiele gwiazd typu słonecznego może umrzeć, zanim w ich układzie planetarnym pojawią się złożone formy życia. Dlatego też naukowcy przyglądali się nie tylko gwiazdom typu widmowego G, czyli żółtym karłom, do których należy Słońce. Przeanalizowali też znane nam egzoplanety krążące wokół pomarańczowych karłów (gwiazda typu K). Są one chłodniejsze, mniej masywne i mniej jasne, niż żółte karły, ale za to żyją od 20 do 70 miliardów lat.
      Warto jednak pamiętać, że sama planeta nie może być zbyt stara. Nie może bowiem wyczerpać swojego wewnętrznego ciepła i utracić ochronnego pola magnetycznego. Ziemia liczy sobie obecnie około 4,5 miliarda lat. Zdaniem specjalistów najlepszy dla planety okres na podtrzymanie i rozwój życia to wiek 5–8 miliardów lat.
      Ważna jest też wielkość planety. Planeta o 10% większa od Ziemi powinna mieć więcej lądów, a taka o masie około 50% większej od Ziemi powinna dłużej utrzymać wewnętrzne ciepło i charakteryzować się silniejszym polem magnetycznym, które na dłużej zatrzyma atmosferę. Autorzy badań przypominają też o wodzie mówiąc, że nieco więcej wody, szczególnie w postaci wilgoci w powietrzu i chmur, powinno pomóc życiu. Podobnie jest z temperaturą. Planety o średniej temperaturze około 5 stopni Celsjusza wyższej niż Ziemi, w połączeniu z większą wilgotnością, powinny wyewoluować większą różnorodność form życia.
      Schulze-Makuch i jego zespół uznali, że supergościnna planeta powinna krążyć wokół pomarańczowego karła, liczyć sobie 5–8 miliardów lat, być o 10% większa i nie więcej niż 50% bardziej masywna niż ZIemia, posiadać średnią temperaturę powierzchni o 5 stopni Celsjsuza wyższą niż na Ziemi, jej wilgotna atmosfera powinna zawierać 25–30 procent tlenu, a resztę powinny stanowić gazy obojętne, powinny na niej znajdować się rozproszone masy wody i lądów, z wieloma płyciznami i archipelagami. Planeta powinna posiadać duży księżyc o masie od 1 do 10 procent masy planety i znajdujący się w odległości 10–100 średnic planety, powinny na niej zachodzić procesy geologiczne takie jak tektonika płyt lub podobne oraz powinna posiadać silne pole magnetyczne.
      Jako, że kilku z tych elementów (jak np. rozkład mas lądowych, obecność księżyca czy procesów tektonicznych) nie jesteśmy obecnie w stanie badać, naukowcy skupili się na elementach, które już teraz możemy obserwować. Badali zatem typ gwiazdy, wiek planety, jej prawdopodobną wielkość i masę oraz panujące temperatury.
      Gdy naukowcy przyjrzeli się bliżej 24 wybranym przez siebie planetom okazało się, że 9 z nich krąży wokół gwiazdy typu K, 16 z nich ma od 5 do 8 miliardów lat, a na 5 panują temperatury odbiegające od temperatury optymalne nie więcej niż o 10 stopni Celsjusza. Tylko jeden z kandydatów na planetę – KOI 5715.01 – spełniał trzy kryteria planety supergościnnej. Jednak średnie temperatury na tej planecie wynoszą prawdopodobnie 11,59 stopnia Celsjusza, czyli mniej niż na Ziemi. Naukowcy nie wykluczają jednak, że panuje tam silniejszy efekt cieplarniany niż na naszej planecie, więc temperatury te mogą być wyższe, co może czynić KOI 5715.01 planetą supergościnną.
      Szczegóły badań opublikowano w piśmie Astrobiology.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Od dawna słyszymy teorię, że w przeszłości Ziemia była sucha, a wodę przyniosły z czasem bombardujące ją komety i asteroidy. Tymczasem badania opublikowane właśnie na łamach Science sugerują, że woda mogła istnieć na naszej planecie od zarania jej dziejów.
      Naukowcy z Centre de Recherches Pétrographiques et Géochimiques we Francji odkryli, że grupa kamiennych meteorytów o nazwie chondryty enstatytowe, zawiera na tyle dużo wodoru, by dostarczyć na Ziemię co najmniej trzykrotnie więcej wody niż jej zawartość w ziemskich oceanach. Chondryty enstatytowe mają skład taki, jak obiekty z wewnętrznych części Układu Słonecznego, zatem taki, z jakiego powstała Ziemia.
      Nasze odkrycie pokazuje, że materiał, z jakiego powstała Ziemia mógł w znacznym stopniu dostarczyć jej wodę. Materiały zawierające wodór były obecne w wewnętrznych częściach Układu Słonecznego w czasie, gdy formowały się planety skaliste. Nawet jeśli temperatura była wówczas zbyt wysoka, by woda występowała w stanie ciekłym, mówi główny autor badań, Laurette Piani.
      Najnowsze odkrycie to spore zaskoczenie, gdyż zawsze sądzono, że materiał, z którego powstała Ziemia, był suchy. Pochodził bowiem z wewnętrznych obszarów formującego się Układu Słonecznego, gdzie temperatury nie pozwalały na kondensację wody.
      Chondryty enstatytowe pokazują, że woda nie musiała dotrzeć na naszą planetę z krańców Układu. Są rzadkie, stanowią jedynie 2% meteorytów znajdowanych na Ziemi. Jednak ich podobny do Ziemi skład izotopowy wskazuje, że jest z takiego właśnie materiału powstała planeta. Mają bowiem podobne izotopy tlenu, tytanu, wapnia, wodoru i azotu co Ziemia. Jeśli chondryty enstatynowe tworzyły Ziemię – z ich skład izotopowy na to wskazuje – to oznacza, że miały one w sobie tyle wody, by wyjaśnić jej pochodzenie na naszej planecie. To niesamowite, ekscytuje się współautor badań, Lionel Vacher.
      Badania wykazały też, że znaczna część azotu obecnego w ziemskiej atmosferze może pochodzi z chondrytów enstatynowych. Mamy do dyspozycji niewiele chondrytów estatynowych, które nie zostały zmienione przez asteroidę, której były częścią, ani przez Ziemię. Bardzo ostrożnie dobraliśmy chondryty do naszych badań i zastosowaliśmy specjalne techniki analityczne, by upewnić się, że to, co znajdziemy, nie pochodzi z Ziemi, mówi uczony. Badania wody w meteorytach zostały przeprowadzone za pomocą spektrometrii mas i spektrometrii mas jonów wtórnych.
      Założono, że chondryty enstatynowe uformowały się blisko Słońca. Były więc powszechnie uznawane za suche i prawdopodobnie z tego powodu nie przeprowadzono ich dokładnych badań pod kątem obecności wodoru, mówi Piani.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Od ostatnich 30 lat Biegun Południowy ociepla się ponadtrzykrotnie szybciej niż średnia globalna, wynika z badań przeprowadzonych przez profesora Ryana Fogta i Kyle'a Clema z Ohio State University. Naukowcy informują, że ocieplanie to jest głównie powodowane przez naturalną zmienność klimatu i dodatkowo wzmacniane przez emisję gazów cieplarnianych.
      Clem, który obecnie pracuje na nowozelandzkim Victoria University, mówi, że zawsze pasjonowała go pogoda, jej potęga i nieprzewidywalność. Dzięki pracy z Ryanem nauczyłem się wszystkiego o klimacie Antarktyki i półkuli południowej. Przede wszystkim zaś dowiedziałem się wiele o Antarktyce Zachodniej, jego ocieplaniu się, topnieniu lodu i wzrostu poziomu oceanów. Antarktyka doświadcza jednych z największych ekstremów i zmienności pogodowych na planecie, a w powodu jej izolacji, bardzo niewiele o tym kontynencie wiemy. Co roku zaskakuje nas czymś nowym, mówi Clem.
      Wiemy, że przez cały XX wiek większość Antarktyki Zachodniej oraz Półwysep Antarktyczny ogrzewały się i dochodziło do utraty lodu. Jednocześnie zaś Biegun Południowy, znajdujący się w odległym wysoko położonym regionie, ochładzał się aż do lat 80. ubiegłego wieku. Od tamtej pory znacząco się ocieplił.
      Clem i jego zespół przeanalizowali dane ze stacji pogodowej na Biegunie Południowym oraz wykorzystali modele klimatyczne do zbadania mechanizmu ocieplania się wnętrza Antarktyki. Okazało się, że w latach 1989–2018 Biegun Południowy ocieplił się o 1,8 stopnia Celsjusza. Średnie tempo ogrzewania wynosiło więc 0,6 stopnia na dekadę, było więc trzykrotnie większe niż średnia globalna w tym czasie.
      Autorzy badań stwierdzili, że ogrzewanie się wnętrza Antarktyki jest spowodowane głównie przez tropiki, szczególnie zaś przez wysokie temperatury wód oceanicznych zachodniego Pacyfiku, które doprowadziły do zmiany rozkładu wiatrów na Południowym Atlantyku, przez co zwiększył się transport ciepłego powietrza nad Biegun Południowy. Te zmiany na południowym Atlantyku to, zdaniem uczonych, ważny mechanizm powodujący anomalie klimatyczne we wnętrzu Antarktyki.
      Zdaniem Clema i Fogta, ogrzewanie się wnętrza kontynentu, mimo iż sam mechanizm zmian jest naturalny, nie miałoby miejsca gdyby nie działalność człowieka. Naturalny mechanizm, czyli zmiana układu wiatrów u atlantyckich wybrzeży Antarktyki spowodowana przez temperatury wód na zachodnim Pacyfiku, został bowiem bardzo wzmocniony przez emisję gazów cieplarnianych, przez którą wody Pacyfiku są wyjątkowo gorące.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...