Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Pytanie, co było pierwsze, jajko czy kura, dręczy wiele osób, w tym astrofizyków. Dla nich jajkiem i kurą są galaktyki i czarne dziury. Najnowsze obserwacje wskazują, że pierwsza mogła być czarna dziura, która "wybudowała" sobie galaktykę. Jeśli tak jest w rzeczywistości to zyskujemy również odpowiedź na pytanie, dlaczego czarne dziury są bardziej masywne gdy znajdują się wewnątrz bardziej masywnych galaktyk.

Naukowcy z European Southern Observatory wysunęli teorię o pierwszeństwie czarnych dziur budujących swoje galaktyki na podstawie obserwacji kwazaru HE0450-2958. Jest on położony w odległości 5 miliardów lat od Ziemi. To jedyny kwazar, którego galaktyka nie została odnaleziona.


Dotychczas uważano, że nie widzimy jej, gdyż jest ukryta za olbrzymimi chmurami pyłu. Uczeni z ESO, przychylając się do takiej opinii, użyli teleskopu pracującego w średnich zakresach podczerwieni. Przy tej długości fali pył powinien być natychmiast widoczny w postaci jasno świecących chmur. Okazało się jednak, że żadnego pyłu nie ma, a w pobliżu kwazaru znajduje się, prawdopodobnie niezwiązana z nim, galaktyka, w której tempo powstawania gwiazd jest niezwykle szybkie. Odpowiada ono tworzeniu w ciągu roku 350 gwiazd wielkości Słońca, czyli 100-krotnie więcej niż w okolicznych galaktykach.

Szczegółowe obserwacje wykazały, że z kwazaru w stronę galaktyki przemieszcza się strumień wysoko energetycznych cząsteczek i gazu. Takie "wstrzykiwanie" materii może wskazywać, że kwazar zasila powstawanie gwiazd, a więc tworzy własną galaktykę. 

Oba obiekty połączą się w przyszłości. Kwazar porusza się względem galaktyki z prędkością kilkudziesięciu tysięcy kilometrów na godzinę. Dzielą je od siebie zaledwie 22 000 lat świetlnych. Chociaż teraz kwazar jest 'nagi', w przyszłości zyska 'ubranie', gdy połączy się ze swym bogatym w gwiazdy towarzyszem. Wówczas, podobnie do innych kwazarów, znajdzie się wewnątrz gorącej galaktyki - mówi David Elbaz, główny autor studium.

Innymi słowy czarna dziura, która "napędza" kwazar może być przyczyną formowania się galaktyk. To z kolei pozwala zrozumieć, dlaczego masywnym galaktykom towarzyszą masywne czarne dziury.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Już Carl Sagan w "Kontakt" pisał, ze "kosmici" przebudowują kosmos, żeby powstrzymać rozszerzenia się wszechświata (szkoda, ze książka poza domem, bym walnął stosowny cytacik).

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Takie "wstrzykiwanie" materii do może wskazywać

pomyłeczka

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Zatem co zasila ów kwazar? Dzety kwazarów nie są niczym niezwykłym i wynikają z charakteru czarnych dziur.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Już Carl Sagan w "Kontakt" pisał, ze "kosmici" przebudowują kosmos, żeby powstrzymać rozszerzenia się wszechświata (szkoda, ze książka poza domem, bym walnął stosowny cytacik).

Pytanie. Co jest jajkiem, a co kurą?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Pytanie. Co jest jajkiem, a co kurą?

De nihilo nihil fit. Sam się zastanawiam, co było przed Wielkim Wybuchem - i raczej się tego nie dowiemy. Co prawda idąc za Wiki

Z punktu widzenia modelu standardowego Wielkiego Wybuchu i klasycznej (niekwantowej) teorii grawitacji nie można mówić o okresie "przed" Wielkim Wybuchem, jako że Wszechświat powstał w momencie Wielkiego Wybuchu. Przed Big Bangiem nie istniał ani czas, ani przestrzeń, ani materia.
Ja jednak uważam, że coś musiało być. Tylko być może nie będziemy w stanie nigdy określić CO.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Tylko być może nie będziemy w stanie nigdy określić CO.

Paradoks początku jest idealny, bo skoro pytasz się o CO, to równocześnie musisz się zapytać skąd się wzięło to COŚ przed big bangiem itd... ja tam wolę pozostawić takie rozważania naukowcom i teologom - niech się bawią, mnie bardziej od wczoraj interesuje co się ciekawego jutro/pojutrze wydarzy...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

ja tam wolę pozostawić takie rozważania naukowcom i teologom - niech się bawią, mnie bardziej od wczoraj interesuje co się ciekawego jutro/pojutrze wydarzy...

 

rzecz w tym, że aby móc przewidywać co się stanie jutro, powinniśmy poznać przeszłość, a teologia akurat tutaj nie pomoże :-)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

rzecz w tym, że aby móc przewidywać co się stanie jutro, powinniśmy poznać przeszłość

Możesz rozwinąć? Jak dla mnie aby móc przewidywać przyszłość/wycinek przyszłości musisz poznać mechanizmy rządzące daną dziedziną, najwygodniejsze są dane historyczne, ale nie zawsze znajdują zastosowanie - ot poker - spróbuj przewidzieć co padnie na flopie na podstawie poprzednich wydarzeń. ach, gdyby plastik miał pamięć podręczną i wiedział, kiedy ma się pojawić...

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
co było przed Wielkim Wybuchem

 

Poprzedni wszechświat, który zapadł się pod wpływem swojej grawitacji ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Dziwne. Skoro jedna Czarna dziura "hoduje" sobie w ciągu roku 350 gwiazd to nawet więcej niż dziwne. Wg. tego co nas do tej pory uczono powstanie gwiazdy łączy się z mln lat:xd. Więc albo:przekłamanie w druku

:albo ingerencja inteligencji, której wg. uczonych nigdy w kosmosie nie zaobserwowano.

pozdrawiam

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wg. tego co nas do tej pory uczono powstanie gwiazdy łączy się z mln lat:xd.

 

Tak to już jest z nauką. Pojawią się nowe dane, wykona się nowe doświadczenia i trzeba rewidować dotychczasową wiedzę, zmieniać wzory, itd. Ale przynajmnije dzięki temu świat nie jest nudny i zawsze znajdzie się coś ciekawego do odkrycia.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Jeśli tak jest w rzeczywistości to zyskujemy również odpowiedź na pytanie, dlaczego czarne dziury są bardziej masywne gdy znajdują się wewnątrz bardziej masywnych galaktyk.

Jakimże cudem Czarna Dziura może być "bardziej masywna" jeśli teoretycznie posiada nieskończoną masę ?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jakim cudem może posiadać nieskończoną masę? Skąd niby? :D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Możesz rozwinąć? Jak dla mnie aby móc przewidywać przyszłość/wycinek przyszłości musisz poznać mechanizmy rządzące daną dziedziną, najwygodniejsze są dane historyczne, ale nie zawsze znajdują zastosowanie - ot poker - spróbuj przewidzieć co padnie na flopie na podstawie poprzednich wydarzeń. ach, gdyby plastik miał pamięć podręczną i wiedział, kiedy ma się pojawić...

 

czesiu, ależ ja wcale nie mówię o wróżeniu, ale o prawdopodobieństwie. Jeśli poznasz zasady, którymi rządzi się wszechświat, będziesz mógł określić najbardziej prawdopodobne wydarzenia. Im lepiej poznasz zasady i wszystkie czynniki (zmienne), tym trafniej będziesz mógł przewidzieć co nastąpi potem. Tyle, że im więcej zmiennych i im mniejsza wiedza (niepełne teorie), tym jest trudniej przewidzieć "co padnie na flopie".

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Popatrz na coś tak prostego jak giełda, czy modele ekonomiczne - wszystko to jest o kant D rozwalić, bo zostało zbyt uproszczone - owszem modele pomagają odjąć decyzję ale wcale nie dają ci odpowiedzi dlaczego jest/było tak a nie inaczej. Wracając do przykładu z giełdą - skoro naukowcy nie potrafią rozgryźć czegoś o tak małej skali, to w jaki sposób chcą rozgryźć wszechświat?

 

Same prawdopodobieństwo to za mało, popatrz na ilość godzin, które ponoć dyski twarde mają wytrzymywać - właśnie wyliczoną na podstawie prawdopodobieństwa. Nie wiem jak ty, ale ja wykończyłem już ponad 4 dyski, z których każdy miał działać bezawaryjnie spokojnie przez 20 lat.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Właśnie w tym upraszczaniu, a raczej braku pełnej wiedzy tkwi problem. Gdybyśmy mieli pełne dane na temat jakiegoś zjawiska - niech będzie ten flop w pokerze (nawet nie wiem co to jest ;)). To wiedząc jak są rozłożone karty przed tasowaniem i znając ich rozmiary co do atomu, wszystkie siły które na nei działały podczas tasowania (czy co tam się robi aby tego flopa otrzymać) to moglibyśmy ze 100% pewnością powiedzieć jak on na końcu będzie wyglądał.

Dzisiaj wygląda to tak że części danych nie mamy, a część danych się upraszcza - bo nie ma się danych mówiących o tym że to uproszczenie znacząco wpłynie na wynik :D

Zauważ że we wszystkich naukach o kosmosie mamy coraz większą wiedzę i coraz więcej potrafimy przewidzieć - z grubsza, ale ciągle mamy postęp.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Europejski radioteleskop LOFAR (LOw Frequency ARray) – którego stacje znajdują się również w Polsce – zanotował najdłuższą parę dżetów wydobywających się z czarnej dziury. Struktura nazwana Porfyrion – od imienia jednego z gigantów z mitologii greckiej – ma długość 23 milionów lat świetlnych. Dotychczas, na podstawie obserwacji i obliczeń sądzono, że maksymalna długość takich dżetów jest znacznie mniejsza.
      Dotychczas sądzono, że limit długości pary dżetów wynosi 4,6–5,0 Mpc (megaparseków). Parsek to 3,26 roku świetlnego, zatem mówimy tutaj o około 16 milionach lat świetlnych. W 2022 roku ten sam zespół naukowy poinformował o istnieniu dżetu wydobywającego się z galaktyki radiowej Alkynoeus. Ma on długość 5 Mpc i był opisywany jako największa struktura pochodzenia galaktycznego. Brak dłuższych par dżetów oraz wyliczenia teoretyczne skłoniły naukowców do wysunięcia hipotezy, że 5 Mpc jest limitem długości.
      Informujemy o zaobserwowaniu struktury radiowej rozciągającej się na około 7 Mpc, czytamy na łamach Nature. Istnienie dżetu dowodzi, że tego typu struktury mogą uniknąć zniszczenia przez niestabilności magnetohydrodynamiczne na przestrzeniach kosmologicznych, nawet jeśli powstały w czasie, gdy wszechświat był znacznie bardziej gęsty, niż obecnie. Nie wiadomo, w jaki sposób tak długotrwała stabilność mogła zostać zachowana.
      Odkrycie sugeruje też, że gigantyczne dżety mogły odgrywać większą niż sądzono rolę w formowaniu się galaktyk we wczesnym wszechświecie. Astronomowie uważają, że galaktyki i ich czarne dziury wspólnie przechodzą ewolucję, a jednym z kluczowych elementów dżetów jest emitowanie olbrzymich ilości energii, które wpływają na ich galaktyki macierzyste i galaktyki z nimi sąsiadujące. Nasze odkrycie pokazuje, że oddziaływanie takich dżetów rozciąga się na większe odległości, niż sądziliśmy, mówi współautor badań, profesor George Djorgovski z Kalifornijskiego Uniwersytetu Technologicznego.
      Autorzy nowych badań wykorzystali LOFAR do poszukiwania olbrzymich dżetów. Dżety to powszechne zjawisko, jednak zwykle są stosunkowo niewielkie. Wcześniej znano setki naprawdę dużych struktur tego typu i uważano, że rzadko one występują. Teraz badacze zarejestrowali ich ponad 10 000. Wielkie dżety były znane wcześniej, ale nie wiedzieliśmy, że jest ich tak dużo, dodaje profesor Martin Hardcastle z University of Hertfordshire.
      Poszukiwania olbrzymich dżetów rozpoczęły się od dość przypadkowego spostrzeżenia. W 2018 roku główny autor obecnych badań, Martijn S. S. L. Oei, wraz z zespołem wykorzystał LOFAR do obserwowania włókien rozciągających się pomiędzy galaktykami. Na obrazach naukowcy dostrzegli zaskakująco dużo wielkich dżetów. Nie mieliśmy pojęcia, że jest ich aż tyle, mówi Oei.
      Naukowcy zaczęli więc szukać kolejnych wielkich dżetów i trafili na Porfyriona. Poza LOFAR-em wykorzystali kilka innych teleskopów, dzięki którym określili, skąd pochodzi i jak daleko od nas się znajduje. Zauważyli nie tylko, że struktura ta pochodzi ze znacznie wcześniejszych okresów istnienia wszechświata, niż inne. Stwierdzili, że gigant znajduje się w regionie wszechświata, w którym istnieje wiele czarnych dziur tego samego typu, z którego on pochodzi. To aż może wskazywać, że przez astronomami jeszcze wiele podobnych odkryć. Możemy obserwować wierzchołek góry lodowej, mówi Oei.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Teleskop Webba dostarczył wielu wyjątkowych informacji, które pozwalają lepiej zrozumieć wszechświat. Były wśród nich i takie, które spowodowały, że zaczęto mówić o kryzysie w kosmologii i konieczności rewizji modeli. Jak bowiem stwierdzono, we wczesnym wszechświecie istniały galaktyki znacznie bardziej masywne, niż wynika to z obecnie stosowanych modeli. Tak masywne galaktyki nie powinny pojawić się tak krótko po Wielkim Wybuchu. Autorzy najnowszej pracy twierdzą jednak, że – przynajmniej niektóre z nich – są znacznie mniej masywne, niż się wydawało.
      Autorką najnowszych badań jest Katherine Chworowsky i jej zespół z University of Texas w Austin. Jak zauważyli badacze, galaktyki położone dalej, a więc starsze, wciąż były mniejsze od tych, położonych bliżej. Wszystko się więc zgadzało. To była wskazówka, że warto przyjrzeć się bliżej temu zjawisku.
      Naukowcy wykonali więc szczegółową analizę danych z Webba zebranych w ramach projektu Cosmic Evolution Early Release Science (CEERS) i znaleźli w nich sygnały świadczące o istnieniu szybko przemieszczającego się wodoru. Wszystko więc wskazuje na to, że galaktyki, które wydają się zbyt masywne, jak na swój wiek, zawierają czarne dziury, które w bardzo szybkim tempie wchłaniają otaczający je gaz. Ten szybko poruszający się gaz emituje tak dużo światła, że wydaje się, iż galaktyki zawierają znacznie więcej gwiazd, niż w rzeczywistości. A więc, że są znacznie bardziej masywne. Gdy badacze usunęli te „podejrzane” galaktyki z analizy, okazało się, ze cała reszta starych galaktyk mieści się w ramach przewidzianych obecnymi modelami. Tak więc standardowy model kosmologiczny nie przeżywa kryzysu. Za każdym razem, gdy mamy teorię, która tak długo wytrzymała próbę czasu, potrzebujemy przytłaczających dowodów, by ją obalić. A tak nie jest w tym przypadku, mówi profesor Steven Finkelstein, którego badania w ramach projektu CEERS dostarczyły dowodów wykorzystanych przez zespół Chworowsky.
      O ile więc naukowcom udało się rozwiązać główny problem dotyczący zbyt dużej masy galaktyk we wczesnym wszechświecie, nierozwiązana pozostała jeszcze jedna zagadka. W danych Webba widzimy bowiem niemal dwukrotnie więcej masywnych starych galaktyk, niż wynika to z modelu kosmologicznego. Może we wczesnym wszechświecie galaktyki bardziej efektywnie zmieniały gaz w gwiazdy, zastanawia się Chworowsky.
      Gwiazdy powstają, gdy gaz schłodzi się na tyle, że zapada się pod wpływem grawitacji. Dochodzi wówczas do jego kondensacji w gwiazdę. Jednak w miarę kurczenia się obłoku gazu, jego temperatura wzrasta i pojawia się ciśnienie skierowane na zewnątrz. W naszym kosmicznym sąsiedztwie istnieje równowaga obu tych sił - skierowanego do wewnątrz ciśnienia chłodnego gazu i skierowanego na zewnątrz ciśnienia zapadającej się gwiazdy, przez co gwiazdy tworzą się bardzo powoli. Być może jednak we wczesnym wszechświecie, który był bardziej gęsty od obecnego, ciśnienie skierowane na zewnątrz napotykało większy opór, więc gwiazdy tworzyły się szybciej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W jednym z laboratoriów na Imperial College London odtworzono wirujący dysk plazmy, z tych, jakie otaczają czarne dziury i tworzące się gwiazdy. Eksperyment pozwala lepiej modelować procesy, zachodzące w takich dyskach, a naukowcy mają nadzieję, że dzięki temu dowiedzą się, jak rosną czarne dziury i powstają gwiazdy.
      Gdy materia zbliża się do czarnej dziury, jest rozgrzewana i staje się plazmą, czwartym stanem materii składającym się z naładowanych jonów i wolnych elektronów. Zaczyna też się obracać, tworząc dysk akrecyjny. W wyniku obrotu powstają siły odśrodkowe odrzucające plazmę na zewnątrz, jednak siły te równoważy grawitacja czarnej dziury.
      Naukowcy chcą poznać odpowiedź na pytanie, w jaki sposób czarna dziura rośnie, skoro materia – w formie plazmy – pozostaje na jej orbicie. Najbardziej rozpowszechniona teoria mówi, że niestabilności w polu magnetycznym plazmy prowadzą do pojawienia się tarcia, plazma traci energię i wpada do czarnej dziury.
      Dotychczas mechanizm ten badano za pomocą ciekłych wirujących metali. Za ich pomocą sprawdzano, co dzieje się, gdy pojawi się pole magnetyczne. Jednak metale te zamknięte są w rurach, co nie oddaje w pełni swobodnie poruszającej się plazmy.
      Doktor Vincente Valenzuela-Villaseca i jego zespół wykorzystali urządzenie Mega Ampere Generator for Plasma Implosion Experiments (MAGPIE) do stworzenia wirującego dysku plazmy. Za jego pomocą przyspieszyli osiem strumieni plazmy i doprowadzili do ich zderzenia, w wyniku czego powstała obracająca się kolumna plazmy. Odkryli, że im bliżej środka, tym plazma porusza się szybciej. To ważna cecha dysków akrecyjnych.
      MAGPIE generuje krótkie impulsy plazmy, przez co w utworzonym dysku dochodziło tylko do jednego obrotu. Jednak liczbę obrotów będzie można zwiększyć wydłużając czas trwania impulsów plazmy. Przy dłużej istniejących dyskach możliwe będzie też zastosowanie pól magnetycznych i zbadanie ich wpływu na plazmę. Zaczynamy badać dyski akrecyjne w nowy sposób, zarówno za pomocą Teleskopu Horyzontu Zdarzeń, jak i naszego eksperymentu. Pozwoli nam to przetestować różne teorie i sprawdzić, czy zgadzają się one z obserwacjami, mówi Valenzuela-Villaseca.
      Ze szczegółami badań można zapoznać się na łamach Physical Review Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Supermasywna czarna dziura, pędząca z prędkością 1 650 000 kilometrów na godzinę, przemieszcza się przez przestrzeń międzygalaktyczną, ciągnąc za sobą gigantyczny ogon gwiazd i materii gwiazdotwórczej. Niezwykły, jedyny taki znany nam obiekt, zauważył przypadkiem Teleskop Kosmiczny Hubble'a.
      Za czarną dziurą o masie 20 milionów mas Słońca podąża ogon z nowo narodzonych gwiazd. Ma on długość 200 000 lat świetlnych, jest więc dwukrotnie dłuższy niż średnica Drogi Mlecznej i rozciąga się od czarnej dziury, aż po jej galaktykę macierzystą, z której się wydostała. W ogonie musi znajdować się olbrzymia liczba nowo powstałych gwiazd, gdyż całość ma aż połowę jasności swojej galaktyki macierzystej.
      Astronomowie nie są oczywiście w stanie dostrzec samej czarnej dziury, ale widzą skutki jej oddziaływania. Widzą zatem długi ogon gwiazd i materii gwiazdotwórczej, na którego jednym końcu znajduje się oddalona od nas o 7,5 miliarda lat świetlnych galaktyka RCP 28, a na drugim wyjątkowo jasno świecący obszar. Naukowcy przypuszczają, że obszar ten to albo dysk akrecyjny wokół czarnej dziury, albo też gaz, który został podgrzany do wysokich temperatur przez wdzierającą się w niego, pędzącą z olbrzymią prędkością czarną dziurę. Gaz na czele czarnej dziury jest podgrzewany przez falę uderzeniową generowaną przez czarną dziurę pędzącą z prędkością ponaddźwiękową, mówi Pieter van Dokkum z Yale University.
      To był całkowity przypadek. Przyglądałem się obrazom z Hubble'a i zobaczyłem niewielką smużkę. Pomyślałem, że to promieniowanie kosmiczne wywołało zaburzenia obrazu. Jednak, gdy wyeliminowaliśmy promieniowanie kosmiczne, smużka nadal nam była. I nie wyglądała jak coś, co wcześniej widzieliśmy, dodaje van Dokkum.
      Naukowcy postanowili się bliżej przyjrzeć tajemniczemu zjawisku i wykorzystali spektroskop z W. M. Keck Observatories na Hawajach. Zobaczyli jasną strukturę i po badaniach doszli do wniosku, że została ona utworzona przez supermasywną czarną dziurę, która wydobyła się ze swojej galaktyki.
      Zdaniem van Dokkuma i jego zespołu, wyrzucenie czarnej dziury to skutek licznych kolizji. Do pierwszej z nich doszło około 50 milionów lat temu, gdy połączyły się dwie galaktyki. Ich supermasywne czarne dziury utworzyły układ podwójny i zaczęły wirować wokół siebie. Po jakimś czasie doszło do zderzenia z kolejną galaktyką. Ta również zawierała supermasywną czarną dziurę. Utworzył się niestabilny układ trzech czarnych dziur. Około 39 milionów lat temu jedna z nich przejęła część pędu z dwóch pozostałych i została wyrzucona z galaktyki.
      Gdy pojedyncza czarna dziura odleciała w jedną stronę, dwie pozostałe krążące wokół siebie czarne dziury zostały odrzucone w drugą stronę. Po przeciwnej stronie galaktyki naukowcy zauważyli bowiem coś, co może być oddalającym się układem dwóch czarnych dziur, a w samym centrum galaktyki nie zauważono obecności żadnej czarnej dziury.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astronomowie z Indii i Kanady zarejestrowali emisję radiową w paśmie 21 cm pochodzącą z wyjątkowo odległej galaktyki. Ich osiągnięcie otwiera drogę do lepszego poznania wszechświata, szczególnie jego odległych części. Daje ono np. nadzieję na znalezienie odpowiedzi na pytanie, w jaki sposób w odległych galaktykach powstają gwiazdy. Galaktyki emitują różne rodzaje sygnałów radiowych. Dotychczas mogliśmy rejestrować ten konkretny sygnał tylko z bliższych galaktyk, co ograniczało naszą wiedzę, mówi Arnab Chakraborty, doktorant na kanadyjskim McGill University.
      Emisja w paśmie 21 centymetrów pochodzi z atomów wodoru, który szczególnie interesuje naukowców. Atomowy wodór to podstawowy budulec gwiazd, ma też olbrzymi wpływ na ewolucję galaktyk. Zatem, by lepiej zrozumieć ewolucję wszechświata, naukowcy chcą zrozumieć ewolucję gazu w różnych punktach jego historii. A dzięki indyjskiemu Giant Metrewave Radio Telescope oraz wykorzystaniu techniki soczewkowania grawitacyjnego udało się zarejestrować emisję z atomów wodoru znajdujących się w bardzo odległej galaktyce.
      Dotychczas najbardziej odległą galaktyką, dla której zarejestrowano emisję w paśmie 21 cm, był obiekt oddalony od nas o 4,1 miliarda lat. Przesunięcie ku czerwieni tej galaktyki wynosiło z=0.376. Przesunięcie ku czerwieni to zjawisko polegające na wydłużaniu się fali promieniowania elektromagnetycznego w miarę oddalania się źródła emisji od obserwatora. W przypadku światła widzialnego falami o największej długości są fale barwy czerwonej, stąd nazwa zjawiska. Kanadyjsko-indyjski zespół zarejestrował teraz emisję z galaktyki, dla której z wynosi 1.29, co oznacza, że jest ona oddalona od nas o 8,8 miliarda lat świetlnych. Przechwycony sygnał został z niej wyemitowany, gdy wszechświat liczył sobie zaledwie 4,9 miliarda lat. Ze względu na gigantyczną odległość, do chwili, gdy przechwyciliśmy sygnał, emisja z pasma 21 cm przesunęła się do pasma 48 cm, mówi Chakraborty.
      Zarejestrowanie tak słabego sygnału z tak wielkiej odległości było możliwe dzięki zjawisku soczewkowania grawitacyjnego, w wyniku którego fale emitowane ze źródła są zaginane jak w soczewce przez obecność dużej masy – na przykład galaktyki – pomiędzy źródłem a obserwatorem. W tym przypadku soczewkowanie wzmocniło sygnał 30-krotnie, dzięki czemu mogliśmy zajrzeć tak głęboko w przestrzeń kosmiczną, wyjaśnia profesor Nirupam Roy. Badania wykazały, że masa wodoru atomowego w obserwowanej galaktyce jest niemal dwukrotnie większa niż masa gwiazd.
      Uzyskane wyniki dowodzą, że już za pomocą obecnie dostępnych technologii jesteśmy w stanie coraz bardziej szczegółowo badać coraz odleglejsze obszary wszechświata i śledzić jego ewolucję.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...