Sterowanie oczami
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Świadkowie, niestety, często się mylą. Okazuje się, że by zdobyć bardziej wiarygodne dowody dla sądu, warto polegać nie na tym, co człowiek mówi, ale gdzie patrzy.
Ruchy oczu są szybko ściągane w rejon zapamiętanych obiektów - podkreśla prof. Deborah Hannula z University of Wisconsin Milwaukee. Śledzenie, gdzie i przez jaki czas ktoś patrzy, może pomóc w odróżnieniu obiektów wcześniej widzianych i nowych [...].
Amerykańscy psycholodzy dali studentom do pooglądania 36 twarzy, które następnie poddano morfingowi. Nowe fizjonomie miały być bardzo podobne do oryginalnych. Później badani zapoznawali się z 36 trzyelementowymi zestawami. Poinformowano ich, że w zbiorze może w ogóle nie występować twarz z początku eksperymentu. Naciśnięciem guzika trzeba było zasygnalizować, która z twarzy pojawiła się w pierwotnym zbiorze. W razie nieobecności takiego elementu należało wybrać jakąkolwiek twarz. Eksperymentatorzy prosili też, by nie tylko wskazywać, ale i powiedzieć, czy dana fizjonomia pojawiła się wcześniej, czy nie.
Gdy ochotnicy przyglądali się 3-elementowym zestawom, naukowcy nagrywali ruchy oczu. Ustalali, gdzie dany człowiek spojrzał na początku i ile czasu spędził na patrzeniu na ten obiekt. W czasie analizy twarze podzielono na 3 grupy: 1) rzeczywiście oglądane na początku eksperymentu, 2) twarze poddane morfingowi, które badani pomylili z twarzami pierwotnymi, 3) twarze zmorfowane, wskazane przy pełnej świadomości, że nie są tymi, o które chodziło.
Okazało się, że ochotnicy łatwo identyfikowali twarze oglądane na wstępie. Dłużej na nie patrzyli i często kierowali tam wzrok od razu po zaprezentowaniu 3-elementowego zestawu. Interesujące jest to, że zanim badani wybrali twarz i zasygnalizowali to, naciskając guzik, w porównaniu do innych twarzy, nieproporcjonalnie dużo patrzyli na tę "docelową". Wszystko jednak zmieniało się po naciśnięciu guzika: spoglądanie dopasowywało się do reakcji behawioralnej, bez względu na to, czy była prawidłowa, czy nie.
Hannula uważa, że metodę bazującą na monitorowaniu ruchów sakkadowych oczu można wykorzystać w badaniu pamięci dzieci czy osób chorych psychicznie (obie te grupy miewają problemy komunikacyjne).
-
przez KopalniaWiedzy.pl
Podczas londyńskiego Nokia Show fińska firma pokazała prototypowe tzw. urządzenie kinetyczne. To elastyczny gadżet wielkości smartfona, którym sterujemy... zginając go. Przewijanie kolejnych zdjęć, przybliżanie i oddalanie obrazu, wybieranie plików muzycznych do odtworzenia, pauzowanie muzyki i inne czynności możemy wykonać odkształcając urządzenie na najróżniejsze sposoby.
Przedstawiciele Nokia Research Center nie sugerują, że nowy sposób sterowania ma wyprzeć wyświetlacze dotykowe. Jednak wskazują, że może on się przydać tam, gdzie wyświetlacz dotykowy jest bezużyteczny - przy niskich temperaturach, gdy użytkownik ma rękawiczki lub gdy z jakiegoś powodu nie chce czy nie może patrzyć na ekran. Niewykluczone, że ten sposób sterowania smartfonem czy tabletem będzie łatwiejszy dla osób niewidzących.
Przedstawiciel Nokii pytany, jak szybko urządzenie może trafić na rynek, odpowiedział wkrótce. Zaraz jednak dodał, że wszystko zależy od popytu.
http://www.youtube.com/watch?v=hvsqpmuUTQg -
przez KopalniaWiedzy.pl
Aparatura medyczna podlega coraz większej miniaturyzacji, do jej konstruowania coraz częściej wykorzystuje się też materiały pochodzące z ludzkiego ciała. Bez wątpienia ciekawym pomysłem jest mikroskopijny, a w dodatku organiczny system do obrazowania z wbudowanymi nanoprzetwornikami z fosfolipidów występujących w błonach komórkowych.
Dr Melissa Mather z Uniwersytetu w Nottingham wyjaśnia, że urządzenie można zastosować do wczesnego wykrywania nowotworów, monitorowania aktywności elektrycznej mózgu oraz śledzenia pojedynczych komórek podczas podróży przez organizm. Brytyjczycy cieszą się z tego, że nanoaparat do obrazowania jest zupełnie nietoksyczny, powstaje przecież z tego, co i tak występuje w ciele.
Systemy do monitorowania komórek i tkanek są coraz bardziej potrzebne. Prężnie rozwijają się terapie komórkowe, ale by mieć pewność, że leczenie [parkinsonizmu, cukrzycy czy choroby serca] przebiega właściwie, należy monitorować miejsce, do którego trafiły komórki oraz ich zachowanie. To spory problem dla współczesnych technologii i staramy się temu jakoś zaradzić.
Przetworniki elektromechaniczne były do tej pory budowane przede wszystkim z pojedynczych kryształów lub ceramiki. Niedawno jednak naukowcy zorientowali się, że jeśli zminiaturyzuje się je do skali nano, można w nich wykorzystywać o wiele więcej różnych materiałów. Wykazano, że za pomocą błon biologicznych da się ujarzmić aktywność elektryczną komórek ludzkiego ciała i przekształcić ją w energię mechaniczną.
Mather pracuje nad formowaniem z fosfolipidów pęcherzyków (liposomów). Chodzi o wykorzystanie ich właściwości akustycznych, a więc o pozyskanie przetworników elektroakustycznych. W przyszłości jej zespół skoncentruje się na zwiększaniu mocy sygnału akustycznego poprzez modyfikacje składu, kształtu i rozmiarów liposomu.
Brytyjczykom nie chodzi tylko o skanowanie, bo jeśli połączy się liposomy ze specyficznymi cząsteczkami wykazującymi powinowactwo do pewnych typów komórek, będzie można je lokalizować i śledzić ich ruchy po organizmie. Końcowym etapem prac mają być testy na fantomach tkankowych. Pod warunkiem, że wszystko pójdzie po myśli naukowców, prototyp systemu powinien powstać do 2016 r.
-
przez KopalniaWiedzy.pl
Sony zapowiedziało sprzedaż urządzenia będącego rodzajem kina domowego zakładanego... na głowę. HMZ-T1 zostało wyposażone w dwa panele OLED o przekątnej 0,7 cala i rozdzielczości 1280x720 pikseli oraz w wysokiej jakości słuchawki stereo. Użytkownik, po założeniu urządzenia, będzie mógł oglądać firmy HD zarówno kręcone techniką 2D jak i 3D.
Sony twierdzi, że urządzenie wiernie oddaje kolory, charakteryzuje się wysokim kontrastem oraz czasem odpowiedzi krótczym niż 0,01 ms. Ma to pozwolić na wyświetlanie ostrego, płynnego obrazu o wysokiej jakości.
Szeroki kąt widzenia (około 200 stopni) oraz taka budowa urządzenia, by do użytkownika nie dochodziły bodźce zewnętrzne ma wywoływać efekt „zanurzenia" w obrazie. Pomoże w tym możliwość wybrania 4 trybów emitowania dźwięku przez słuchawki. W trybie „Standard" ma on przypominać dźwięk stereo jaki zwykle słyszymy w słuchawkach. Tryb „Cinema" przypomina kino, pozostałe tryby to „Game" i „Music".
MHZ-T1 zadebiutuje 11 listopada w Japonii, gdzie będzie sprzedawane w cenie 60 000 jenów (800 USD). Niedługo potem, być może w okresie świątecznym, trafi do sklepów w USA i Europie.
-
przez KopalniaWiedzy.pl
Cztery amerykańskie uniwersytety podzielą się grantem w wysokości 1,2 miliona dolarów, który przeznaczony jest na stworzenie interfejsu pozwalającego na kontrolę protez za pomocą mózgu.
Naukowcy z Rice University zbudują sztuczną dłoń sterowaną za pomocą elektrod przyczepionych do głowy. Dane EEG zostaną w czasie rzeczywistym połączone z informacjami o przepływie krwi i poziomie tlenu w płacie czołowym. Będzie to możliwe dzięki działającej w bliskiej podczerwieni technologii opracowanej na Drexler University.
Sztuczna ręka będzie zawierała czujniki zbierające informacje z palców i dłoni, a dane będą przesyłane użytkownikowi za pomocą wibrujących części protezy, które w punkcie styku z ciałem pacjenta będą dawały sygnały, informujące np. o konieczności zmiany siły uchwytu.
Trzecią z uczelni biorących udział w projekcie jest University of Maryland, gdzie powstała technologia EEG pozwalająca na przesuwanie kursora po ekranie za pomocą myśli. Chcemy połączyć te wszystkie technologie - nieinwazyjne dekodowanie neuronalne, bezpośrednią kontrolę za pomocą mózgu oraz system dotykowych informacji zwrotknych - mówi Marcia O'Malley, jedna z głównych badaczy na Rice University.
Z trzema wspomnianymi uczelniami będzie współpracował też University of Michigan.
W perspektywie długoterminowej mogą powstać protezy o takich samych możliwościach jak prawdziwe kończyny - dodaje O'Malley.
To niejedyny w USA program mający na celu stworzenie zaawansowanych protez.
W ubiegłym roku DARPA przyznała Uniwersytetowi Johnsa Hopkinsa grant w wysokości 34,5 miliona dolarów. Pieniądze zostaną przeznaczone na stworzenie interfejsu pozwalającego na sterowanie za pomocą mózgu sztucznym ramieniem o 22 stopniach swobody.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.