
Komputery z DNA bardziej przyjazne użytkownikowi
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Naukowcy z Northeastern University odkryli, w jaki sposób można na żądanie zmieniać elektroniczny stan materii. Potencjalnie może to doprowadzić do stworzenia materiałów elektronicznych, które pracują z 1000-krotnie większą prędkością niż obecnie i są bardziej wydajne. Możliwość dowolnego przełączania pomiędzy przewodnikiem a izolatorem daje nadzieję na zastąpienia krzemowej elektroniki mniejszymi i szybszymi materiałami kwantowymi. Obecnie procesory pracują z częstotliwością liczoną w gigahercach. Dzięki pracom uczonych z Northeastern, w przyszłości mogą być to teraherce.
Opisana na łamach Nature Physics technika „termicznego chłodzenia” (thermal quenching) polega przełączaniu materiału pomiędzy izolatorem a przewodnikiem za pomocą kontrolowanego podgrzewania i schładzania. Współautor odkrycia, profesor Gregory Fiete porównuje tę metodę do przełączania bramek w tranzystorze. Każdy, kto kiedykolwiek używał komputera, doszedł w pewnym momencie do punktu, w którym chciał, by komputer działał szybciej. Nie ma nic szybszego niż światło, a my używamy światła do kontrolowania właściwości materiałów z największą prędkością, jaką dopuszcza fizyka, dodaje uczony.
Naukowcy w temperaturze bliskiej temperaturze pokojowej oświetlali materiał kwantowy 1T-TaS2 uzyskując „ukryty stan metaliczny”, który dotychczas był stabilny w temperaturach kriogenicznych, poniżej -150 stopni Celsjusza. Teraz osiągnięto ten stan w znacznie bardziej praktycznych temperaturach, sięgających -60 stopni C, a materiał utrzymywał go przez wiele miesięcy. To daje nadzieję na stworzenie podzespołów składających się z jednego materiału, który w zależności od potrzeb może być przewodnikiem lub izolatorem.
Źródło: Dynamic phase transition in 1T-TaS2 via a thermal quench, https://www.nature.com/articles/s41567-025-02938-1
« powrót do artykułu -
przez KopalniaWiedzy.pl
Budowa własnego PC pozwala wydobyć maksimum możliwości z dostępnych podzespołów. Na czym jednak powinieneś skupiać się w pierwszej kolejności, jeśli potrzebujesz komputera zarówno do pracy, jak i do grania? Oto pigułka wiedzy, która rozwieje twoje wątpliwości!
Sprzęt do pracy i gier – czy da się połączyć te obie rzeczy? Budowa własnego komputera może być pewnym wyzwaniem dla osób bez większego doświadczenia. Stworzenie sprzętu z zakupionych przez siebie podzespołów pozwala jednak na kontrolowanie każdego aspektu – od procesora, przez chłodzenie po pastę termoprzewodzącą. W taki sposób możesz więc nie tylko zaoszczędzić pieniądze, ale również wykrzesać jeszcze więcej z każdego elementu.
Oczywiście produkty, z których będzie składał się twój komputer, zależą od twoich potrzeb. Niektórzy nie potrzebują zabójczo szybkich maszyn, skupiając się na przeglądaniu Internetu czy rozmowie z bliskimi. Na drugim biegunie są gracze, którzy marzą o płynnej rozgrywce i najwyższym poziomie grafiki.
Istnieją jednak użytkownicy, którzy potrzebują niezwykle wszechstronnego urządzenia. Mowa tu na przykład o osobach, które pracują zdalnie i z tego względu rozglądają się za komputerem gotowym zarówno do pisania, montażu filmów czy obróbki zdjęć, jak i do rozrywki. Na szczęście te dwa światy idą ze sobą w parze i w większości przypadków ich potrzeby mocno się ze sobą pokrywają.
Komputer do pracy – na jakich elementach powinieneś się skupić? Praca zdalna staje się coraz popularniejsza, lecz może ona przyjmować naprawdę wiele oblicz. Trudno jest więc znaleźć komputer, który będzie odpowiadać potrzebom każdego pracownika. Niektórzy zresztą nie potrzebują wystrzałowych osiągów, z których i tak nie skorzystają. Wszystko zależy więc tak naprawdę od wykonywanego zawodu.
Osoby zajmujące się pracą z tekstem przede wszystkim powinny skupić się na dużej ilości pamięci operacyjnej RAM. Dzięki temu nawet kilkanaście otwartych kart w przeglądarce nie spowolnią działania. Tym samym warto również postawić na mocny procesor, który pozwoli podtrzymać wielozadaniowość, nawet w przypadku korzystania z dwóch monitorów.
Karta graficzna w tym przypadku schodzi na dalszy plan, czego zdecydowanie nie można powiedzieć na przykład o obróbce zdjęć czy montażu filmów. GPU jest kluczem do szybkiego działania programów i przetwarzania samych plików w edytorach. Tu zresztą również konieczny jest wydajny procesor, który udźwignie na sobie niezwykle wymagające zadanie w postaci renderów, czyli kompilowania ujęć filmowych w jeden duży plik.
Grafika, stabilność, moc – kluczowe elementy dobrego PC do gier Gracze także powinni skupiać się na trzech najważniejszych elementach wspomnianych wyżej: procesorze, pamięci RAM oraz karcie graficznej. W tym ostatnim przypadku warto postawić na dedykowaną odmianę, gotową na najnowsze tytuły. Ciekawą propozycją dla osób szukających topowych rozwiązań jest nowa karta graficzna NVIDIA GeForce RTX 5090, którą możesz sprawdzić na przykład na stronie https://www.morele.net/karta-graficzna-msi-geforce-rtx-5090-ventus-3x-oc-32gb-gddr7-14471822/.
Jeśli budujesz komputer od zera, pamiętaj również o wytrzymałej płycie głównej czy mocnym zasilaczu, dzięki któremu wszystkie podzespoły będą w stanie działać na maksymalnych obrotach. Stabilność w grach online zapewni odpowiednia karta sieciowa, a długą żywotność poszczególnych elementów możesz zapewnić między innymi dzięki wydajnemu chłodzeniu.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Badania DNA ludzi zabitych w Pompejach przez Wezuwiusza pokazały, jak błędne były czynione przez wieki założenia. Okazuje się, że rzekome rodziny nie były rodzinami, zmarłym źle przyporządkowano płeć. Okazało się ponadto, że ludność Pompejów w większości stanowili emigranci ze wschodnich regionów Morza Śródziemnego.
Erupcja Wezuwiusza nie dała szans na ucieczkę wielu mieszkańcom miasta. Ci, którzy przeżyli pierwszą jej fazę, zabiły lawiny piroklastyczne, szybko przemieszczające się chmury gorących gazów i popiołów. Pokryły one ciała ofiar grubą warstwą, na zawsze zachowując ich kształt.
Od XIX wieku naukowcy wykonują w Parco Archeologico di Pompei odlewy ciał, wstrzykując gips z puste miejsca, pozostałe po rozłożeniu się tkanek. Uczonym, którzy prowadzili zabiegi konserwatorskie, udało się pozyskać DNA z pofragmentowanych szkieletów zatopionych w 14 z 86 tych odlewów. To zaś pozwoliło na określenie płci zmarłych, ich pochodzenia oraz związków genetycznych pomiędzy nimi. I pokazało, jak błędne były dotychczasowe założenia, które opierano na wyglądzie i pozycji ciał.
Na przykład w Domu Złotej Bransolety, jedynym miejscu z którego mamy DNA całej grupy ciał, okazało się, że cztery osoby, które interpretowano jako rodzice z dwójką dzieci, nie były w żaden sposób ze sobą spokrewnione, mówi profesor David Caramelli z Uniwersytetu we Florencji. To nie jedyne błędne przypuszczenia, zweryfikowane przez DNA.
Innym znanym przykładem jest dorosła osoba nosząca złotą bransoletę i trzymająca dziecko. Tradycyjnie interpretowano je jako matkę z dzieckiem. Okazało się, że to mężczyzna i dziecko, którzy nie byli ze sobą spokrewnieni. Mamy też dwie obejmujące się osoby, które interpretowano jako matka z córką lub siostry. Teraz wiemy, że jedna z tych osób to mężczyzna, dodaje David Reich z Uniwersytetu Harvarda.
Ponadto wszyscy mieszkańcy Pompejów, w przypadku których udało się zdobyć dane z całego genomu, okazali się w głównej mierze potomkami emigrantów ze wschodnich regionów Śródziemiomorza. Pochodzenie takie widoczne jest też w genomach współczesnych im mieszkańców Rzymu, co tylko pokazuje, jak kosmopolityczne było Imperium Romanum w tych czasach.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Niedźwiedzie polarne są zagrożone przez zmniejszający się zasięg lodu morskiego w Arktyce, na którym spędzają większość życia. Naukowcy chcieliby badać i nadzorować ten gatunek, by go ocalić. Uczeni z University of Idaho znaleźli unikatową nieinwazyjną metodę identyfikowania niedźwiedzi polarnych. Zamiast stresować je śledząc za pomocą śmigłowców, strzelać środkami usypiającymi i zakładać urządzenia namierzające, amerykańscy uczeni pozyskują DNA niedźwiedzi z... odciśniętych na śniegu śladów łap.
Na łamach Frontiers in Conservation Science profesor Lisett Waits i badaczka Jennifer Adams z Idaho, we współpracy ze specjalistami z North Slope Borough Department of Wildlife oraz Alaska Department of Fish and Game opisali, w jaki sposób można pozyskać ze śniegu komórki naskórka niedźwiedzi.
Naukowcy najpierw zeskrobywali cienką warstwę śniegu ze świeżych śladów, a następnie w laboratorium zbierali komórki i analizowali ich DNA. W ten sposób zbierali unikatowe informacje o każdym z osobników. We wstępnej fazie badan pobrali 15 próbek. W 2 z nich nie znaleziono DNA niedźwiedzia, w 11 zaś stwierdzono jego obecność. Na razie technika ta znajduje się w fazie eksperymentalnej i wymaga dopracowania, jednak już w tej chwili widać, że jest nieinwazyjnym i efektywnym kosztowo sposobem badania dzikich niedźwiedzi polarnych.
O ile nam wiadomo, to pierwszy przypadek identyfikowania niedźwiedzi polarnych czy jakichkolwiek innych zwierząt na podstawie pozostawionego w środowisku DNA zebranego ze śniegu, cieszy się Adams.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wytrzymałe i lekkie materiały są niezwykle pożądane w przemyśle i życiu codziennym. Mogą one udoskonalić wiele maszyn i przedmiotów, od samochodów przez implanty medyczne po kamizelki kuloodporne. Niestety wytrzymałość i niska masa zwykle nie idą w parze. Poszukujący rozwiązania tego problemu naukowcy z University of Connecticut, Columbia University i Brookhaven National Laboratory wykorzystali DNA i szkło. Dla tej gęstości jest to najbardziej wytrzymały znany materiał, mówi Seok-Woo Lee z UConn.
Żelazo może wytrzymać nacisk do 7 ton na centymetr kwadratowy, jest jednak bardzo gęste i ciężkie. Znamy metale, jak tytan, które są lżejsze i bardziej wytrzymałe. Potrafimy też tworzyć stopy metali o jeszcze mniejszej masie i jeszcze większej wytrzymałości. Ma to bardzo praktyczne zastosowania. Na przykład najlepszym sposobem na zwiększenie zasięgu samochodu elektrycznego nie jest dokładanie akumulatorów, a zmniejszenie masy pojazdu. Problem w tym, że tradycyjne techniki metalurgiczne osiągnęły w ostatnich latach kres swoich możliwości, naukowcy szukają więc innych niż metale wytrzymałych i lekkich materiałów.
Szkło, wbrew temu co sądzimy, jest wytrzymałym materiałem. Kostka szkła o objętości 1 cm3 może wytrzymać nacisk nawet 10 ton. Pod jednym warunkiem – szkło nie może posiadać wad strukturalnych. Zwykle pęka ono właśnie dlatego, że już istnieją w nim niewielkie pęknięcia, zarysowania czy brakuje atomów w jego strukturze. Wytworzenie dużych kawałków szkła pozbawionego wad jest niezwykle trudne. Naukowcy potrafią jednak tworzyć niewielkie takie kawałki. Wiedzą na przykład, że kawałek szkła o grubości mniejszej niż 1 mikrometr jest niemal zawsze bez wad. A jako że szkło jest znacznie mniej gęste niż metale czy ceramika, szklane struktury zbudowane kawałków szkła o nanometrowej wielkości powiny być lekkie i wytrzymałe.
Dlatego też Amerykanie wykorzystali DNA, które posłużyło za szkielet, i pokryli je niezwykle cienką warstwą szkła o grubości kilkuset atomów. Szkło pokryło jedynie nici DNA, pozostawiając sporo pustych przestrzeni. Szkielet z DNA dodatkowo wzmocnił niewielką, pozbawioną wad, szklaną strukturę. A jako że spora jej część to puste przestrzenie, dodatkowo zmniejszono masę całości. W ten sposób uzyskano materiał, który ma 4-krotnie większą wytrzymałość od stali, ale jest 5-krotnie mniej gęsty. To pierwszy tak lekki i tak wytrzymały materiał.
Możliwość projektowania i tworzenia trójwymiarowych nanomateriałów przy użyciu DNA otwiera niezwykłe możliwości przed inżynierią. Jednak potrzeba wielu badań, zanim możliwości te wykorzystamy w konkretnych technologiach, stwierdza Oleg Gang z Columbia University.
Teraz naukowcy prowadzą eksperymenty z zastąpieniem szkła ceramiką opartą na węglikach. Planują przetestować różne struktury DNA i różne materiały, by znaleźć takie o najlepszych właściwościach.
Jestem wielkim fanem Iron Mana. Zawsze zastanawiałem się, jak stworzyć lepszą zbroję dla niego. Musi być one bardzo lekka, by mógł szybciej latać i bardzo wytrzymała, by chroniła go przed atakami wrogów. Nasz nowy materiał jest pięciokrotnie lżejszy i czterokrotnie bardziej wytrzymały od stali. Nasze szklane nanostruktury byłyby lepsze dla Iron Mana niż jakikolwiek inny materiał, stwierdził Lee.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.