Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Komputerowe gry akcji nie tylko nie niszczą wzroku, ale także poprawiają czułość oka na kontrast (ang. contrast sensitivity). Można więc powiedzieć, że stanowią swego rodzaju trening.

Czułość na kontrast to zdolność do dostrzegania zmian w odcieniach szarości, przeciwstawionych zunifikowanemu tłu. Jest ona nieodzowna przy wielu codziennych czynnościach, np. czytaniu. Uważa się, że z wiekiem ulega upośledzeniu. Czułość oka na kontrast jest zmienna i zależy od częstotliwości przestrzennej elementów obrazu.

Wcześniej nie przypuszczano, że jest to zdolność, którą można poprawić przez trening. Korygowano to na poziomie optyki oka. By uzyskać lepszą czułość na kontrasty, stosowano okulary lub przeprowadzano zabieg laserowy. Tymczasem okazuje się, że nawet bez tej korekcji da się pomóc mózgowi lepiej wykorzystywać informacje docierające z siatkówki – wyjaśnia prof. Daphne Bavelier z University of Rochester.

Bavelier i zespół przeprowadzili dwa eksperymenty. Porównano czułość na kontrast u miłośników bardzo dynamicznych strzelanin FPS oraz zwolenników wolniejszych gier akcji. Okazało się, że ci pierwsi byli o 50% lepsi w wykrywaniu zmian kontrastu. Ponieważ dzięki temu odkryciu badacze nadal nie potrafili rozstrzygnąć, czy umiejętności zmieniły się pod wpływem gry, czy też wybór rodzaju gry był podyktowany wyjściowymi uzdolnieniami jednostek, przeprowadzono drugi z eksperymentów.

Dwie grupy osób, które wybierały gry inne niż strzelanki, przeszły 50-godzinny trening. Członkowie pierwszej musieli się zmierzyć z Call of Duty, a drugiej z grą obfitującą we wrażenia wzrokowe, ale właściwie pozbawioną akcji. Okazało się, że w pierwszej odnotowano 43-proc. poprawę w zakresie czułości na kontrast, w drugiej nic się nie zmieniło. Amerykanie utrzymują, że korzystne efekty utrzymują się przez długi czas.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Widzisz bo to jest tak jak z szachami… Szachy to też RPG, bo są w konwencji średniowiecza!

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Hmmm... W rzeczy samej to większość gier komputerowych to RPG - w czystym tego słowa znaczeniu :) W końcu odgrywamy na ekranie rolę Mario, Kung Lao czy Niko Belic`a...

 

Do trenowania spostrzegawczości kontrastów polecam Deltę Force uruchomioną w 320x240. Zielone ludziki na zielonym tle i ogromnym terenie. Pamiętam kilkugodzinne skradanie się w trawie z jednego wzgórza na drugie, jak grałem przeciw koledze po Lanie ;)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Czytałem kiedyś o tym . O eksperymencie . Ale było pisane o Tetrisie , a Tetrisa ... można zaliczyć do gier akcji ?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Każda gra jest grą akcji! Czy to ruskie jajeczka, kapsle, domino, bierki, majhong, pac-man, gra w gume, mortal kombat lub podchody! Nie ma gier bez akcji czy . .  satysfakcji!

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Każda gra jest grą akcji! Czy to ruskie jajeczka, kapsle, domino, bierki, majhong, pac-man, gra w gume, mortal kombat lub podchody! Nie ma gier bez akcji czy . .  satysfakcji!

 

Literaki na Kurniku tu gra akcji ? A chińczyk ? ??? są gry bez akcji

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Biochemia widzenia to skomplikowany proces. Molekuły pozwalające oglądać otaczającą rzeczywistość przez długi czas pozostawały nieuchwytne dla naukowców. Zespół prowadzony przez prof. Macieja Wojtkowskiego z Międzynarodowego Centrum Badań Oka (ICTER) proces ten umożliwia dzięki innowacyjnemu dwufotonowemu skaningowemu oftalmoskopowi fluorescencyjnemu.
      Zwykło się mawiać, że oczy są zwierciadłem duszy - bez wątpienia są jednak naszym oknem na świat. Mechanizmy zachodzące w siatkówce są kluczowe dla odbioru bodźców wzrokowych ze środowiska. To pierwszy i bardzo ważny etap drogi, jaką musi przejść impuls światła, by zostać przetworzony na obraz.
      Przez wiele lat naukowcy i lekarze nie byli w stanie obserwować procesów zachodzących w fotoczułych komórkach siatkówki u ludzi. Zespół naukowców prowadzony przez prof. Macieja Wojtkowskiego z ICTER w Instytucie Chemii Fizycznej Polskiej Akademii Nauk (IChF PAN) stworzył dwufotonowy skaningowy oftalmoskop fluorescencyjny (TPEF-SLO). Jest to instrument pozwalający na podglądanie biochemii widzenia w żywym oku. Prof. Wojtkowski zwraca uwagę, że „dzięki ścisłej współpracy z biochemikiem prof. Krzysztofem Palczewskim z University of California Irvine oraz laserową grupą prof. Grzegorza Sobonia z Politechniki Wrocławskiej jesteśmy w stanie szybko i skutecznie walidować nową metodę obrazową i wykorzystać ją w praktyce”.
      Jak to się dzieje, że widzimy?
      Ludzkie oko jest jednym z najbardziej precyzyjnych narządów naszego ciała, umożliwiającym rozróżnienie ok. 200 barw czystych. Mieszając te barwy można uzyskać ok. 17 000 rozróżnialnych odcieni, a uwzględniając nasze możliwości odróżnienia ok. 300 stopni nasilenia barw związanych z natężeniem światła, uzyskamy oszałamiającą liczbę 5 milionów odbieranych kolorów.
      W siatkówce, czyli części oka, która odbiera bodźce wzrokowe, występują czopki i pręciki. Czopki umożliwiają widzenie i rozróżnianie barw w silnym oświetleniu, a pręciki cechuje wrażliwość na pojedyncze impulsy światła widzialnego o zmroku lub w nocy. Wrażenia wzrokowe są przekazywane nerwem wzrokowym do mózgu (pierwotnej kory wzrokowej), ale impuls, który je przenosi powstaje w wyniku reakcji chemicznych zachodzących w komórkach siatkówki. Upraszczając możemy powiedzieć, że ludzkie oko jest fabryką biochemiczną, której aktywność jest uzależniona od reakcji chemicznych jednej molekuły – retinalu. Ta cząsteczka jest niezbędna dla funkcji receptorów białek G, np. rodopsyny w pręcikach, i przetwarzania światła na impulsy elektryczne – mówi prof. Maciej Wojtkowski.
      Rodopsyna jest światłoczułym receptorem białka G. Zaabsorbowanie kwantu promieniowania powoduje izomeryzację 11-cis-retinalu związanego z rodopsyna, jego uwolnienie i inicjację impulsu wzrokowego przekazywanego do mózgu. W przypadku niedoboru witaminy A, która jest źródłem retinalu, dochodzi do tzw. kurzej ślepoty i ograniczenia zdolności do widzenia o zmroku lub w nocy.
      Niestety, praktycznie przez cały cykl widzenia, molekuły niezbędne do prawidłowej funkcji siatkówki pozostają niewykrywalne dla instrumentów naukowych. To dlatego, że łatwo można je pomylić z lipofuscynami, czyli związkami odkładającymi się w siatkówce. Jest jednak jeden proces fizyczny, dzięki któremu molekuły mogą być widoczne - nie możemy ich wykryć za pomocą promieniowania UV, ale możemy je dostrzec stosując fluorescencję ze wzbudzeniem dwufotonowym – dodaje dr inż. Jakub Bogusławski, główny wykonawca projektu.
      Proces dwufotonowy, paleta barw
      Okulistyczne techniki obrazowania to podstawa w diagnozowaniu patologii siatkówki. Dzięki optycznej tomografii OCT, skaningowej oftalmoskopii laserowej (SLO) i autofluorescencji dna oka, dokonaliśmy postępów w mechanizmach ich zrozumienia. To jednak niewystarczający arsenał do pełnego wglądu w chemię widzenia. Nieinwazyjna ocena procesów metabolicznych zachodzących w komórkach siatkówki (regeneracja pigmentu wzrokowego) jest niezbędna dla rozwoju przyszłych terapii. W przypadku zwyrodnienia plamki żółtej związanego z wiekiem (AMD), które jest jedną z najczęstszych chorób powodujących ślepotę, na wczesnym etapie nie można odróżnić komórek zmienionej i prawidłowej siatkówki. Można jednak je wychwycić dzięki biochemicznym markerom - o ile udałoby się je wzbudzić fluorescencyjnie.
      Właśnie taka jest idea obrazowania fluorescencyjnego ze wzbudzeniem dwufotonowym (TPE). Jest to zaawansowana technika pomiaru czynnościowego barwników siatkówki, która może ujawnić różne cechy tej części oka, niewidoczne w innych badaniach. W porównaniu do tradycyjnych metod obrazowania opartych na jednofotonowej fluorescencji, TPE pozwala oglądać metabolity witaminy A, które biorą udział w widzeniu. Oko jest idealnym narządem do obrazowania metodą wielofotonową – mówi prof. Wojtkowski, którego zespół odpowiada za odkrycie. Tkanki oka, takie jak twardówka, rogówka czy soczewka, są wysoce przezroczyste dla światła w bliskiej podczerwieni. To z kolei w sposób nieinwazyjny przenika do tkanek siatkówki.
      Obrazy uzyskane dzięki TPEF-SLO potwierdziły, że jest to satysfakcjonujący sposób oglądania molekuł niezbędnych dla prawidłowej funkcji cyklu widzenia. Porównanie danych między ludźmi i mysimi modelami chorób siatkówki ujawniło podobieństwo do modeli mysich, w których szybko gromadzą się produkty kondensacji bisretinoidów, składników lipofuscyny. Wierzymy, że molekuły kluczowe dla cyklu wzrokowego i toksyczne produkty uboczne tego szlaku metabolicznego będą mogły być mierzone i określane ilościowo za pomocą obrazowania TPE – mówi dr Grażyna Palczewska, jeden z głównych wykonawców projektu.
      Ten instrument pozwalający na nieinwazyjną ocenę stanu metabolicznego ludzkiej siatkówki otwiera liczne możliwości terapeutyczne dla wszystkich chorób degeneracyjnych siatkówki. Może być przydatny także do testowania nowych leków, bo dzięki zrozumieniu biochemii widzenia, lekarze będą w stanie trafiać dokładnie tam, gdzie potrzeba. Badania dotyczące TPEF-SLO zostały opublikowane w czasopiśmie The Journal of Clinical Investigation.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Do poprawy pogarszającego się wzroku wystarczą 3 minuty tygodniowo porannej ekspozycji oczu na światło czerwone o długości fali 670 nm, donoszą naukowcy z University College London. Najnowsze badanie opiera się na wcześniej przeprowadzonych eksperymentach, kiedy to ten sam zespół naukowy zauważył, że wystawienie oka na trzyminutową ekspozycję światła czerwonego uruchamiało mitochondria w siatkówce.
      Teraz naukowcy chcieli sprawdzić, jaki wpływ na oczy będzie miała pojedyncza trzyminutowa ekspozycja na światło o odpowiedniej długości fali. Postanowili też sprawdzić, czy skuteczne będzie światło o znacznie mniejszej energii niż w poprzednich badaniach. Jako, że podczas wcześniejszych badań zauważyli, że mitochondria „pracują na zmiany” w zależności od pory dnia, zbadali też, czy istnieje różnica pomiędzy wystawieniem oczu na działanie światła rano i wieczorem.
      Okazało się, że po trzyminutowym wystawieniu oka na działanie światła o długości fali 670 nm wiązało się z 17-procentową poprawą postrzegania kontrastu pomiędzy kolorami. Efekt taki utrzymywał się przez co najmniej tydzień. Co interesujące, pozytywny skutek miało wyłącznie poddanie się działania takiego światła rankiem. Oświetlanie oka po południu nie przyniosło żadnej poprawy.
      Autorzy badań mówią, że ich odkrycie może doprowadzić do pojawienia się taniej domowej terapii, która pomoże milionom ludzi na całym świecie, doświadczającym naturalnego pogarszania się wzroku. Wykazaliśmy, że pojedyncza poranna ekspozycja na światło czerwone o odpowiedniej długości fali znacząco poprawia wzrok, mówi główny autor badań, profesor Glen Jeffery.
      Komórki w naszych siatkówkach zaczynają starzeć się około 40. roku życia. Pogarsza się nam wzrok. Proces ten jest częściowo związany z gorszym funkcjonowaniem mitochondriów. Ich zagęszczenie jest największe w fotoreceptorach, które mają też największe wymagania energetyczne. Z tego też powodu siatkówka jest jednym z najszybciej starzejących się organów naszego organizmu. W ciągu życia dochodzi w niej do aż 70-procentowego spadku produkcji ATP, substancji odgrywającej bardzo ważną rolę w produkcji energii. To prowadzi do znacznego upośledzenia funkcji fotoreceptorów, którym brakuje energii.
      Uczeni z UCL najpierw przeprowadzili eksperymenty na myszach, muszkach-owocówkach i trzmielach, u których zauważyli znacznie poprawienie funkcjonowania fotoreceptorów po oświetleniu ich światłem o długości 670 nm. Mitochondria są szczególnie wrażliwe na większe długości fali, które wpływają na ich funkcjonowanie. Fale o długości 650–900 nm powodują zwiększenie produkcji energii przez mitochondria, dodaje Jeffery.
      Fotoreceptory składają się z czopków, odpowiedzialnych za widzenie kolorów, oraz pręcików, reagujących na intensywność światła, pozwalających np. na widzenie przy słabym oświetleniu. Autorzy badań skupili się na czopkach i pomiarach postrzegania kontrastu pomiędzy czerwonym a zielonym oraz niebieskim a żółtym.
      W badaniach wzięło udział 20 osób w wieku 34–70 lat, u których nie występowały choroby oczu i które prawidłowo widziały kolory. Pomiędzy godziną 8 a 9 rano ich oczy były przez trzy minuty oświetlane za pomocą urządzenia LED przez światło o długości 670 nm. Trzy godziny później zbadano ich postrzeganie kolorów, a u 10 osób badanie powtórzono tydzień później. Średnio widzenie kolorów poprawiło się u badanych o 17% i stan ten utrzymał się przez co najmniej tydzień. U niektórych ze starszych osób doszło do 20-procentowej poprawy widzenia kolorów.
      Kilka miesięcy później, po upewnieniu się, że pozytywny efekt poprzedniego eksperymentu już minął, badanie powtórzono na 6 osobach. Przeprowadzono je w taki sam sposób, ale pomiędzy godzinami 12 a 13. Nie zauważono żadnej poprawy widzenia.
      Profesor Jeffery mówi, że obecnie brakuje na rynku tanich urządzeń do terapii wzroku czerwonym światłem. Istniejące urządzenie mogą zaś kosztować ponad 20 000 USD. Dlatego też uczony rozpoczął współpracę z firmą Planet Lighting UK i pomaga jej stworzyć tanie urządzenie do domowej terapii. Technologia jest prosta i tania, energia fali 670 nm jest niewiele większa od naturalnie otaczającego nas światła. Biorąc to pod uwagę, jestem przekonany, że uda się stworzyć tanie łatwe w użyciu urządzenie do stosowania w domu, stwierdza uczony.
      Naukowcy podkreślają jednak, że przydatne byłyby dodatkowe badania na większej próbce ochotników, gdyż zauważyli, że nawet u osób w podobnym wieku różnica w poprawie wzroku może być znacząca. Być może istnieją jeszcze inne czynniki, które na to wpływają.
      Ze szczegółami badań można zapoznać się na łamach Scientific Reports.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Oko – narząd wzroku człowieka – pod wieloma względami zachwyca i zdumiewa nie tylko precyzją widzenia oraz możliwością rozróżniania milionów barw, ale również umiejętnością funkcjonowania w niezwykle szerokim przedziale intensywności światła, która w naturalnych warunkach potrafi zmieniać się nawet o czynnik równy dziesięciu miliardom!
      Takie wyzwanie wymaga od fotoreceptorów dysponowania krańcowo odmiennymi, a nawet pozornie sprzecznymi atrybutami: z jednej strony bardzo wysoką czułością, z drugiej zaś strony fotostabilnością. Łączenie tego typu skrajności możliwe jest dzięki aktywności wielu mechanizmów regulacyjnych, funkcjonujących na różnych poziomach organizacji narządu wzroku. Wśród nich ważnym oraz doskonale znanym jest zwężanie oraz rozszerzanie źrenicy w odpowiedzi na zmiany intensywności światła, przypominające działanie przysłony fotograficznej.
      Okazuje się, iż w oku człowieka funkcjonuje również inny ważny mechanizm regulacyjny, przypominający z kolei działanie okularów fotochromowych. Mechanizm ten dynamicznie osłabia intensywność światła docierającego do fotoreceptorów przy wysokich natężeniach, działając w przeciwnym kierunku przy niskim poziomie oświetlenia. W tę nieznaną dotychczas aktywność regulacyjną na poziomie molekularnym zaangażowane są bezpośrednio luteina oraz zeaksantyna, barwniki ksantofilowe obecne w siatkówce oka człowieka, w szczególności w jej centralnym obszarze zwanym plamką żółtą.
      Odkrycie tego mechanizmu zostało właśnie ogłoszone przez międzynarodowy zespół badaczy pracujących pod kierunkiem prof. Wiesława Gruszeckiego z Uniwersytetu Marii Curie-Skłodowskiej w Lublinie. Zespół został utworzony w celu realizacji projektu badawczego w programie TEAM Fundacji na rzecz Nauki Polskiej, współfinansowanym w ramach Programu Operacyjnego Inteligentny Rozwój Unii Europejskiej.
      Jak mówi prof. Gruszecki, lider projektu: Aktywność interdyscyplinarnego zespołu złożonego z fizyków, medyków oraz chemików, zarówno eksperymentalnych, jak i reprezentujących podejścia obliczeniowe, stworzyła unikalne możliwości badania mechanizmów molekularnych funkcjonujących w oku człowieka oraz poszukiwania odpowiedzi na pytania formułowane z perspektywy wielu, dopełniających się obszarów poznawczych. Co równie ważne, zaangażowanie w pracach zespołu uznanych ekspertów, jak prof. Robert Rejdak z Uniwersytetu Medycznego w Lublinie czy prof. Jacek Czub z Politechniki Gdańskiej, ramię w ramię z adeptami nauki – doktorantami oraz studentami – stanowiło „mieszankę wybuchową” doświadczenia i młodzieńczego entuzjazmu, czyniąc naszą współpracę nie tylko dynamiczną, twórczą i wydajną, ale również pełną radości oraz satysfakcji na poziomie relacji społecznych.
      Badacze pokazali, że ksantofile obecne w plamce żółtej oka, w odpowiedzi na zmiany intensywności światła, ulegają odwracalnej fotoizomeryzacji z konfiguracji molekularnej trans do cis, skutkującej zmianą orientacji tych barwników w błonach lipidowych. Co istotne, tego typu zmiana położenia w stosunku do płaszczyzny siatkówki oraz kierunku padających promieni powoduje radykalne zmiany pochłaniania światła przez tę grupę barwników. Przejawia się to przepuszczaniem większej liczby fotonów w kierunku fotoreceptorów, gdy poziom natężenia jest niski, oraz pochłanianiem promieniowania w warunkach jego nadmiernej intensywności.
      Aktywność ta chroni siatkówkę przed fotouszkodzeniami w warunkach silnego oświetlenia, ułatwiając jednocześnie widzenie barwne oraz precyzyjne przy stosunkowo słabym świetle. Jak podkreślają badacze w swoim artykule, dodatkową, istotną cechą odkrytego mechanizmu jest jego bardzo krótki czas aktywacji (poniżej jednej tysięcznej sekundy) w stosunku do typowych reakcji źrenicy (czasy dłuższe niż 0,5 sekundy). Oznacza to, że ochrona fotoreceptorów włącza się automatycznie, zanim jeszcze dotrze do naszej świadomości informacja o zagrożeniu.
      Co równie istotne, źrenica zwęża się jedynie do średnicy ok. 2 mm, pozostawiając niechronioną centralną część siatkówki, która jest odpowiedzialna za widzenie barwne oraz precyzyjne. Ochrona tego właśnie obszaru realizowana jest przez barwniki ksantofilowe oraz przez mechanizm regulacyjny porównany przez badaczy do „żaluzji” otwieranych i zamykanych na poziomie molekularnym w odpowiedzi na zmiany intensywności światła. Fakt, iż zasadniczym elementem aktywnym tych „żaluzji” są cząsteczki luteiny oraz zeaksantyny, które nie są syntetyzowane w organizmie człowieka, wskazuje na konieczność uwzględnienia ich w diecie tak, aby oczy służyły nam zarówno przy słabym, jak i intensywnym oświetleniu przez długie lata naszego życia.
      O skrajnie negatywnych skutkach niedoboru luteiny oraz zeaksantyny w diecie świadczy utrata widzenia spowodowana degeneracją plamki żółtej w siatkówce oka postępującą wraz z wiekiem (AMD, ang. Age-Related Macular Degeneration). Na szczęście w zadaniu komponowania diety oraz doboru właściwych produktów żywnościowych pomaga nam zmysł wzroku, na co wskazuje fakt, iż luteina i zeaksantyna, jako barwniki ksantofilowe, charakteryzują się ciepłą, żółtopomarańczową barwą – mówi prof. Gruszecki.
      Praca przedstawiająca odkrycie mechanizmu „żaluzji molekularnych” w siatkówce oka człowieka ukazała się w czasopiśmie The Journal of Physical Chemistry.
      Jak zauważają autorzy artykułu, warty podkreślenia jest fakt, iż podobny proces odwracalnej fotoizomeryzacji barwników polienowych wykorzystany został przez naturę na drodze ewolucji biologicznej jako centralny mechanizm leżący u podstaw funkcjonowania dwóch zasadniczo odmiennych aktywności na poziomie fizjologicznym w oku człowieka. Fotoizomeryzacja cis-trans retinalu w rodopsynie uruchamia kaskadę sygnałów w procesie widzenia, zaś fotoizomeryzacja luteiny i zeaksantyny w plamce żółtej odpowiada za kształtowanie dynamicznej regulacji intensywności światła docierającego do fotoreceptorów na drodze mechanizmu „żaluzji molekularnych”.
      W poniższym załączniku dostępny jest artykuł wraz z grafiką przedstawiającą ideę eksponatu w muzeum nauki, obrazującego aktywność mechanizmu „żaluzji molekularnych” w oku człowieka.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Wpatrywanie się przez 3 minuty dziennie w głęboką czerwień może znacząco poprawić wzrok - twierdzą naukowcy z Uniwersyteckiego College'u Londyńskiego (UCL). Zespół, którego wyniki ukazały się w Journals of Gerontology, uważa, że odkrycie to może sygnalizować erę domowych terapii okulistycznych, pomagających milionom ludzi z naturalnie pogarszającym się wzrokiem.
      W miarę starzenia nasz wzrok znacząco się pogarsza. [...] Stopniowo pogarsza się zarówno czułość siatkówki, jak i widzenie barwne. Biorąc pod uwagę starzenie się społeczeństw, jest to coraz ważniejsza kwestia - podkreśla prof. Glen Jeffery.
      W wieku ok. 40 lat u ludzi komórki siatkówki zaczynają się starzeć. Po części tempo temu procesowi nadaje pogorszenie funkcji mitochondriów, które nazywa się centrami energetycznymi komórki. Gęstość mitochondrialna jest największa w fotoreceptorach siatkówki, które mają wysokie zapotrzebowanie energetyczne, dlatego siatkówka starzeje się szybciej niż inne narządy. Jednym słowem: czopkom i pręcikom brakuje energii (ATP) do podtrzymania normalnego działania.
      Wcześniejsze badania na myszach, trzmielach i muszkach owocowych wykazały, że ekspozycja na głęboką czerwień (fale o długości 670 nm) znacząco poprawia funkcję fotoreceptorów siatkówki.
      [...] Dłuższe 650-1000-nm fale są pochłaniane i poprawiają działanie mitochondriów, zwiększając produkcję energii - wyjaśnia Jeffery.
      Na potrzeby eksperymentu utworzono 24-osobową grupę; zebrano 12 kobiet i 12 mężczyzn w wieku 28-72 lat bez choroby oczu. Na początku studium wszystkich zbadano pod kątem czułości pręcików i czopków. Czułość pręcików badano w zaciemnionym pomieszczeniu, gdy wzrok przyzwyczaił się do mroku. Zadanie ochotników polegało na wykrywaniu światła o bardzo niskim natężeniu. Czułość czopków oceniano za pomocą kolorowych liter o bardzo małym kontraście.
      Później wszyscy dostawali do domu latarkę LED-ową. Proszono, by przez 2 tygodnie po 3 minuty dziennie wpatrywać się w strumień światła o długości fali rzędu 670 nm (oczy mogły być zamknięte, bo powieka nie odfiltrowuje tej długości światła). Na koniec ponawiano testy czułości czopków i pręcików.
      Okazało się, że u niektórych osób w wieku 40 lat i starszych wrażliwość czopków na kontrast barwny (zdolność do wykrywania kolorów) poprawiła się nawet o 20%. Poprawa była szczególnie zaznaczona dla niebieskiej części widma, która jak wiadomo, jest bardziej dotknięta skutkami pogorszonej funkcji mitochondriów.
      W tej grupie wiekowej stwierdzono również poprawę funkcji pręcików, ale nie była ona tak spektakularna, jak w przypadku czopków.
      Nasze badanie pokazuje, że za pomocą krótkiej ekspozycji na długość światła doładowującą podupadły system energetyczny komórek siatkówki można znacząco poprawić wzrok u starszych osób. Przypomina to doładowanie akumulatora.
      Technologia jest prosta i tania. Wykorzystuje głęboką czerwień pochłanianą przez mitochondria [...].
      Zbudowanie naszego urządzenia kosztuje ok. 12 funtów [ok. 59 PLN], dlatego technologia pozostaje dostępna dla społeczeństwa.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Studenci medycyny od dekad uczą się, że oczy komunikują się z mózgiem za pomocą jednego typu sygnałów, pobudzających. Jednak naukowcy z Northwestern University odkryli właśnie, że część neuronów siatkówki wysyła też sygnały hamujące. Naukowcy zauważyli również, że ten sam zestaw neuronów jest zaangażowany w takie działania jak synchronizacja rytmu dobowego z cyklem dnia oraz ze zwężaniem źrenicy w reakcji na jasne światło. Postanowili się więc przyjrzeć temu bliżej.
      Okazało się, że wysyłane z oka sygnały hamujące zapobiegają zresetowaniu się rytmu dobowego w reakcji na przytłumione światło i zapobiegają zwężaniu się źrenic, gdy jest mało światła. Oba te zjawiska zapewniają nam odpowiednie widzenie i funkcjonowanie za dnia. Sądzimy, że badania te mogą pomóc nam w zrozumieniu, dlaczego nasze oczy są tak wrażliwe na światło, ale podświadome reakcje naszego organizmu są stosunkowo niewrażliwe, mówi główna autorka badań, Tiffany Schmidt.
      W ramach badań Schmidt i jej zespół zablokowali u myszy neurony wysyłające sygnały hamujące. Wówczas za pomocą przytłumionego światła łatwiej było zmienić rytm dobowy myszy. To wskazuje, że sygnały z oczu w sposób aktywny powstrzymują nasz organizm przed zmianą rytmu dobowego w reakcji na przytłumione światło. To niespodziewane zjawisko. Ma to jednak sens, gdyż nie chcielibyśmy, by nasze organizmy zmieniały rytm dobowy w reakcji na zwykłe zmiany oświetlenia. Zmiana rytmu dobowego jest pożądana tylko wtedy, gdy rzeczywiście dochodzi do dużych zmian ilości dostępnego światła, stwierdziła Schmidt.
      Naukowcy zauważyli też, że po zablokowaniu sygnałów hamujących z oczu, źrenice myszy były znacznie bardziej wrażliwe na światło. Sądzimy, że mechanizm ten zapobiega kurczeniu się źrenic w słabym oświetleniu. Do rozszerzonej źrenicy wpada więcej światła, więc lepiej widzimy w takich warunkach. To częściowo wyjaśnia, dlaczego nasze źrenice zwężają się dopiero gdy jasne światło stanie się jeszcze jaśniejsze.
      Ze szczegółami badań można zapoznać się na łamach Science.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...