Sign in to follow this
Followers
0
-
Similar Content
-
By KopalniaWiedzy.pl
Studenci medycyny od dekad uczą się, że oczy komunikują się z mózgiem za pomocą jednego typu sygnałów, pobudzających. Jednak naukowcy z Northwestern University odkryli właśnie, że część neuronów siatkówki wysyła też sygnały hamujące. Naukowcy zauważyli również, że ten sam zestaw neuronów jest zaangażowany w takie działania jak synchronizacja rytmu dobowego z cyklem dnia oraz ze zwężaniem źrenicy w reakcji na jasne światło. Postanowili się więc przyjrzeć temu bliżej.
Okazało się, że wysyłane z oka sygnały hamujące zapobiegają zresetowaniu się rytmu dobowego w reakcji na przytłumione światło i zapobiegają zwężaniu się źrenic, gdy jest mało światła. Oba te zjawiska zapewniają nam odpowiednie widzenie i funkcjonowanie za dnia. Sądzimy, że badania te mogą pomóc nam w zrozumieniu, dlaczego nasze oczy są tak wrażliwe na światło, ale podświadome reakcje naszego organizmu są stosunkowo niewrażliwe, mówi główna autorka badań, Tiffany Schmidt.
W ramach badań Schmidt i jej zespół zablokowali u myszy neurony wysyłające sygnały hamujące. Wówczas za pomocą przytłumionego światła łatwiej było zmienić rytm dobowy myszy. To wskazuje, że sygnały z oczu w sposób aktywny powstrzymują nasz organizm przed zmianą rytmu dobowego w reakcji na przytłumione światło. To niespodziewane zjawisko. Ma to jednak sens, gdyż nie chcielibyśmy, by nasze organizmy zmieniały rytm dobowy w reakcji na zwykłe zmiany oświetlenia. Zmiana rytmu dobowego jest pożądana tylko wtedy, gdy rzeczywiście dochodzi do dużych zmian ilości dostępnego światła, stwierdziła Schmidt.
Naukowcy zauważyli też, że po zablokowaniu sygnałów hamujących z oczu, źrenice myszy były znacznie bardziej wrażliwe na światło. Sądzimy, że mechanizm ten zapobiega kurczeniu się źrenic w słabym oświetleniu. Do rozszerzonej źrenicy wpada więcej światła, więc lepiej widzimy w takich warunkach. To częściowo wyjaśnia, dlaczego nasze źrenice zwężają się dopiero gdy jasne światło stanie się jeszcze jaśniejsze.
Ze szczegółami badań można zapoznać się na łamach Science.
« powrót do artykułu -
By KopalniaWiedzy.pl
Melanocyty wykrywają promieniowanie UVA, wykorzystując rodopsynę - światłoczuły barwnik, o którym wcześniej sądzono, że występują tylko w siatkówce oka. Prowadzi to do wytwarzania znaczących ilości melaniny w ciągu zaledwie paru godzin od ekspozycji, co pozwala zapobiec uszkodzeniom materiału genetycznego. Dotąd wiedziano o produkcji melaniny, która rozpoczyna się parę dni po zapoczątkowaniu uszkodzenia DNA przez promieniowanie UVB.
Jak tylko znajdziesz się na słońcu, Twoja skóra wie, że oddziałuje na nią promieniowanie ultrafioletowe. To błyskawiczny proces, o wiele szybszy niż zakładano - wyjaśnia prof. Elena Oancea.
Podczas eksperymentów laboratoryjnych studentka Oancea Nadine Wicks odkryła wraz z zespołem, że w melanocytach występuje rodopsyna. Udało się także prześledzić etapy uwalniania przez rodopsynę jonów wapnia. Sygnał ten zapoczątkowuje produkcję melaniny.
W pierwszym eksperymencie Amerykanie sprawdzali, czy promieniowanie UV uruchamia wapniowy szlak przekazu sygnału (w cytoplazmie komórki wzrasta stężenie kationów Ca2+). Nic się nie stało, ale biolodzy podejrzewali, że skóra może wyczuwać światło jak oko. Dodali więc retinal - kofaktor receptorów opsynowych, a więc i rodopsyny.
Gdy światło pada na siatkówkę, 11-cis-retinal (kofaktor) absorbuje foton i następuje przekształcenie w trans-retinal. Zmiana kształtu retinalu wywołuje odpowiadającą transformację białka rodopsyny, czyli opsyny.
Kiedy to zrobiliśmy, zobaczyliśmy natychmiastową, masywną reakcję wapniową - opowiada Wicks.
Później naukowcy zauważyli, że melanocyty zawierają RNA i białka rodopsyny. Kiedy na komórki oddziaływano promieniowaniem UV, redukcja poziomu rodopsyny ograniczała sygnalizację wapniową. Gdy brakowało retinalu, spadała produkcja melaniny. Ustalono też, że rodopsynę w melanocytach stymuluje raczej promieniowanie UVA niż UVB.
Oancea i Wicks zastanawiają się, czy rodopsyna działa sama, czy współpracuje z nieznanym jeszcze receptorem. W przyszłości trzeba się też będzie ustalić, czy melanocyty natychmiast eksportują melaninę do innych typów komórek skóry, czy też pierwsze jej partie zatrzymują, chroniąc siebie.
-
By KopalniaWiedzy.pl
Neurony siatkówki potrzebują witaminy C do prawidłowego działania – ujawnili naukowcy z Oregon Health & Science University (OHSU).
Odkryliśmy, że by poprawnie funkcjonować, komórki siatkówki muszą być skąpane w stosunkowo dużych dawkach witaminy C (i to zarówno z zewnątrz, jak i od środka) – wyjaśnia dr Henrique von Gersdorff. Ponieważ siatkówka stanowi część ośrodkowego układu nerwowego, sugeruje to, że prawdopodobnie witamina C odgrywa też znaczącą rolę w mózgu […]. Nikt nie zdawał sobie wcześniej sprawy z zakresu i stopnia wpływu kwasu askorbinowego na ten narząd.
Receptory GABA, które wiążą kwas γ-aminomasłowy, są receptorami hamującymi, czyli obniżają aktywność neuronu postsynaptycznego. Naukowcy z OHSU odkryli, że przy niedoborach witaminy C receptory GABA przestają działać poprawnie. Jako że witamina C jest jednym z podstawowych przeciwutleniaczy, niewykluczone, że zapobiega przedwczesnemu zużyciu receptorów i komórek.
Funkcja witaminy C w mózgu nie jest jeszcze dobrze poznana. Gdy organizm pozbawi się kwasu askorbinowego, najdłużej występuje on w mózgu. Być może mózg jest ostatnim miejscem, w którym powinno zabraknąć tej substancji – dywaguje von Gersdorff, który uważa, że doniesienia jego zespołu rzucą nieco światła na kilka chorób, w tym jaskrę i padaczkę. W ich przypadku dysfunkcyjne neurony w siatkówce i mózgu stają się zbyt pobudzone, bo receptory GABA nie działają, jak powinny. Być może dieta obfitująca w witaminę C będzie wpływać neuroochronnie na siatkówkę – zwłaszcza w przypadku osób szczególnie podatnych na jaskrę.
Badania prowadzono na siatkówce karasi złocistych, która jest zbudowana podobnie do siatkówki ludzkiej.
-
By KopalniaWiedzy.pl
Na Pennsylvania State University wykorzystano budowę oka krewetki modliszkowej (Odontodactylus scyllarus) do stworzenia dwuczęściowej płytki półfalowej, która może przyczynić się do udoskonalenia pamięci holograficznych, płyt CD czy DVD. Krewetka modliszkowa to jedno z niewielu zwierząt, które widzi polaryzację światła. Wielu naukowców sądzi, że oczy tych zwierząt lepiej współpracują z olbrzymim spektrum światła niż jakakolwiek płytka półfalowa stworzona przez człowieka.
Chcemy zmienić polaryzację światła, bez wpływania na jego ilość, przechodzącą przez płytkę. Chcemy by wysoka przepuszczalność i zmiana polaryzacji były niezależne od częstotliwości. Innymi słowy, nie chcemy wpływać na kolor światła - mówi Akhlesh Lakhtakia z Penn State.
Płytki półfalowe są wykorzystywane w tych urządzeniach, w których potrzebna jest konkretna polaryzacja, a w których dochodzi do jej zmiany. Zwykle są one wykonywane z kwarcu, kalcytu lub polimerów. Produkowane są też płytki wielowarstwowe, jednak mają one tendencję do rozwarstwiania się.
Dlatego też uczeni z Uniwersytetu Technologicznego w Taipei we współpracy z profesorem Lakhtakią stworzyli płytkę wzorując się na budowie oka krewetki modliszkowej (krewetki boksującej). Naukowcy stworzyli trójwarstwową płytkę z pięciotlenku tantalu. Wykorzystali przy tym dwie metody osadzania warstw. Jedna pozwoliła na wyprodukowanie środkowej warstwy nanopręcików, które są do siebie równoległe i pochylone w tę samą stronę. Dwie zewnętrzne warstwy to również równoległe nanopręciki, ale wszystkie są ustawione pionowo. Te różne warstwy są konieczne gdy chcemy uzyskać wymaganą polaryzację bez jednoczesnego znaczącego zmniejszania przezroczystości w szerokim spektrum częstotliwości - poinformował Lakhtakia.
Jako że długość nanopręcików jest mniejsza niż długość fali światła widzialnego, cała płytka charakteryzuje się dwójłomnością.
Naukowcy zapewniają jednocześnie, że ich technika produkcji tego typu płytek wykorzystuje powszechnie używane technologie, nie wymaga zatem inwestowania w sprzęt litograficzny i jest kompatybilna z technologiami obecnymi w przemyśle elektronicznym i optoelektronicznym.
-
By KopalniaWiedzy.pl
Ludzie z większym prawdopodobieństwem i silniej potępią czyjeś niemoralne zachowanie, czując, niekoniecznie świadomie, że sytuacji przygląda się ktoś trzeci (Evolutionary Psychology).
Pierrick Bourrat z Uniwersytetu w Sydney, Nicolas Baumard z Uniwersytetu Pensylwanii i Ryan McKay z University of London podejrzewali, że nasiloną ekspresję dezaprobaty można przypisać uwrażliwieniu ludzi na postrzeganie ich własnej reputacji przez otoczenie. By przetestować tę hipotezę, panowie zaprezentowali badanym dwie historie dotyczące przekroczenia norm moralnych - zatrzymania znalezionych pieniędzy i sfałszowania CV. Połowie ochotników dano wydruk na kartce papieru ze zdjęciem pary oczu, podczas gdy reszta zapoznawała się z wersją opatrzoną fotografią kwiatów.
Okazało się, że osoby obdarowane kartkami z oczami oceniały działania bohaterów opowiastek jako mniej akceptowalne moralnie niż ludzie od wydruków z kwiatami. Doszliśmy do wniosku, że wskazówki świadczące o byciu obserwowanym - oczy - mogą uruchamiać zinternalizowane normy moralne lub coś, co określa się mianem prywatnej samoświadomości. Alternatywnie, lub dodatkowo, bo te dwa wyjaśnienia się wzajemnie nie wykluczają, w grę wchodzi [...] publiczna samoświadomość - świadomość wrażenia wywieranego na innych i działania podejmowane, by dostosować je do naszego rozumienia akceptowanych standardów społecznych. Osoby, które demonstrują wyraźne wsparcie dla wspólnych standardów zachowania, mogą się tak zachowywać, by podtrzymać swoją reputację. Niezdolność wyrażenia poparcia może prowadzić do wzbudzenia podejrzeń u innych - wyjaśnia Pierrick Bourrat. Doktorant uważa, że wyniki uzyskane przez jego zespół mają duże znaczenie dla wielu dziedzin życia: od polityki poczynając, a na religii kończąc. Wyjaśniają bowiem, czemu np. polityk wyraża inną opinię nt. moralności czyjegoś zachowania na łonie rodziny czy wśród członków swojego ugrupowania, a publicznie jego osąd staje się już dużo ostrzejszy.
-
-
Recently Browsing 0 members
No registered users viewing this page.