Jump to content
Forum Kopalni Wiedzy

Recommended Posts

Zdolność wirusa grypy do wywoływania zakażeń zależy od bezwzględnej wilgotności powietrza - donoszą naukowcy z Uniwersytetu Stanu Oregon. Ich zdaniem, istnieje ścisła zależność pomiędzy zawartością wody w powietrzu i łatwością transmisji choroby.

Liczne zespoły naukowców już wielokrotnie szukały podobnego powiązania. Wszystkie z nich interesowały się jednak tzw. wilgotnością względną, czyli ilością wody zawieszonej w powietrzu wyrażoną jako ułamek maksymalnej zawartości wody mogącej znajdować się w powietrzu przy określonej temperaturze. Tymczasem okazuje się, że kluczowym parametrem jest wilgotność bezwzględna, określana jako masa wody znajdującej się w jednostce objętości powietrza.

Korelacja jest zadziwiająco silna, twierdzi dr Jeffrey Shaman, główny autor studium. Badacz dodaje: kiedy wilgotność bezwzględna jest niska, trwałość [czyli brak podatności na rozpad i utratę zdolności do zakażania - przyp. red.] wirusa grypy jest wydłużona, a jego zdolność do zakażania rośnie.

Praca naukowców ze stanu Oregon jest kontynuacją badań przeprowadzonych przez badaczy z nowojorskiej Mt. Sinai School of Medicine. W serii testów na świnkach morskich sprawdzali oni wówczas, czy istnieje zależność pomiędzy wilgotnością względną pomieszczeń, w których trzymano zwierzęta, oraz infekcyjnością patogenu. 

Zespół dr. Shamana przejrzał ponownie zebrane informacje i skupił się na wilgotności bezwzględnej, nie zaś na względnej, jak jego poprzednicy. Ta prosta modyfikacja obliczeń statystycznych sprawiła, że wyliczony związek pomiędzy badanymi parametrami diametralnie się umocnił.

Zgodnie z analizami przeprowadzonymi przez badaczy z Nowego Jorku wilgotność względna powietrza wpływała zaledwie w 12% na trwałość wirusa oraz w 36% na jego zdolność do infekowania kolejnych świnek morskich. Korekta naniesiona przez specjalistów z Oregonu sprawiła, że wartości te wynosiły odpowiednio 50% oraz 90%. Mówiąc najprościej, oznacza to, że związek pomiędzy badanymi parametrami stał się znacznie lepiej widoczny (wartość 100% oznacza wyłączny wpływ danego czynnika, zaś 0% - brak jakiejkolwiek zależności).

Przeprowadzone studium wyjaśnia dość skutecznie, dlaczego największe epidemie grypy zdarzają się zimą. Liczne wcześniejsze hipotezy podawały co najmniej kilka przyczyn takiego stanu rzeczy, wśród nich m.in.: mniejsze nasłonecznienie i wpływ światła zdolnego do neutralizacji wirusa, spędzanie większej ilości czasu w zamkniętych pomieszczeniach czy zmiany w odporności człowieka. Wygląda jednak na to, że dane statystyczne potwierdzają prawdziwość hipotezy zaproponowanej przez zespół dr. Shamana.

O odkryciu informuje czasopismo Proceedings of the National Academy of Sciences (PNAS).

Share this post


Link to post
Share on other sites

Proponuję moją metodę szybkiego nawilżania, bierzemy czajnik zalewamy wodą i bez zamykania pokrywki załączamy , para wodna po 15 min gotowania jest wszędzie podczas stygnięcia pochłania gazy z powietrza CO2, radon, wirusy też się przyklejają a następnie większość wilgoci jest kondensowana przy chłodnych ścianach skąd powtórnie paruje uzupełniajac wilgotność przez kilka następnych godzin. OBI sprzedaje taki Bioterm (termometr i higrometr w jednym) za 35zł warto kupić i wiedzieć kiedy płuca wysychają.

Share this post


Link to post
Share on other sites
Guest Matsukawa

O ile dobrze zrozumiałem przyjęta metodyka sprowadzała się do ekspozycji świnek morskich w różnych warunkach wilgotności powietrza. W takim razie przyczyną może być po prostu przesuszenie początkowych partii dróg oddechowych zwierząt, skutkiem czego drobiny kurzu zawierające wirusa nie są skutecznie usuwane, a jego ilość w powietrzu docierającym do gardła i dalej - większa. To właśnie powodowałoby zwiększenie ilości infekcji.

 

Wówczas, zamiast przebywania w zawilgoconym pomieszczeniu, lepiej kupić sobie rozpylacz do nosa z solą fizjologiczną.

Share this post


Link to post
Share on other sites

Gdyby nie prowadzono innych badań na ten temat, miałbyś bez wątpienia rację. Tyle, że wiele wcześniejszych testów wskazywało wyraźnie, że wilgoć szkodzi chemicznej strukturze wirusa. Chociaż bez wątpienia jest to cenna uwaga.

Share this post


Link to post
Share on other sites

<p><strong>Zdolność wirusa grypy do wywoływania zakażeń zależy od bezwzględnej wilgotności powietrza</strong> ..

Z tych badań wynika, że najmniejsze szanse na zachorowanie mają osoby przebywające w gorących i dusznych pomieszczeniach. Dziwne ! 

Share this post


Link to post
Share on other sites

Dlaczego dziwne? Nie od dziś wiadomo, że związki biologicznie czynne (a za takie możemy uznać składniki wirusa) są przeważnie bardziej stabilne w niskich temperaturach i przy niskiej wilgotności. Właśnie dlatego przeprowadza się np. liofilizację żywności, a szczepionki przechowuje się w lodówce. Poza tym pamiętajmy, że to konkretne doświadczenie dotyczyło wirusa grypy, więc warto uważać, żeby nie traktować tych danych jako oczywistych dla wszystkich wirusów.

Share this post


Link to post
Share on other sites

Dlaczego dziwne?

Masz rację. Tak mi się błędnie skojarzyło. Wilogtne i duszne z zachorowaniami na grypę.

Share this post


Link to post
Share on other sites

Przebywanie w ciepłym pomieszczeniu może powodować "złapanie" grypy, ale w takiej sytuacji sprawą kluczową jest zmiana temperatury, a nie sama temperatura w pomieszczeniu. Jeżeli np. przychodzisz z mrozu i trafiasz do ciepłego pomieszczenia, organizm jest przez chwilę w szoku, co może ułatwić transmisję wirusa.

 

Pozdro

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Naukowcy z MIT, Massachusetts General Hospital i Uniwersytetu Harvarda pracują nad uniwersalną szczepionką na grypę, która byłaby skuteczna przeciwko każdemu szczepowi. Na łamach Cell naukowcy opisują szczepionkę wywołującą reakcję układu immunologicznego przeciwko pewnemu fragmentowi proteiny wirusa grypy, który rzadko ulega mutacjom. Zwykle układ odpornościowy nie bierze na cel tego fragmentu.
      Nowa szczepionka składa się z nanocząstek pokrytych proteinami wirusa grypy. Podczas badań na myszach, które zmanipulowano genetycznie tak, by ich układ odpornościowy przypominał układ odpornościowy człowieka, wykazano, że szczepionka powoduje atak układu odpornościowego na wspomniany fragment proteiny. To daje nadzieję, że szczepionka taka mogłaby być skuteczna przeciwko każdemu szczepowi grypy.
      Repertuar przeciwciał jest niemal nieskończenie zróżnicowany, dzięki czemu układ odpornościowy może dopasować się do każdego antygenu. Jednak cała „przestrzeń antygenów” jest nierównomiernie sprawdzana, przez co niektóre patogeny, jak np. wirus grypy są w stanie opracować złożone strategie immunodominancji, przez co układ odpornościowy nie zwraca uwagi na tego typu pięty achillesowe wirusa, stwierdzają naukowcy.
      Najpierw uczeni stworzyli model komputerowy, który pozwolił zaprojektować im techniki pokonania strategii wirusa, polegającej na „odwracaniu uwagi” układu odpornościowego od jego „pięt achillesowych”. Następnie przystąpili do testów na odpowiednio zmodyfikowanych myszach.
      Uzyskane przez nas wyniki są o tyle ekscytujące, że jest to mały krok w kierunku stworzenia szczepionki na grypę, którą będzie można przyjąć raz lub kilka razy i zyskać odporność zarówno na sezonowe, jak i pandemiczne szczepy grypy, mówi profesor Arup K. Chakraborty z MIT.
      Większość szczepionek przeciwko grypie wykorzystuje nieaktywne wirusy grypy. Wirusy grypy wykorzystują hemaglutyninę (HA) do przyłączania się do powierzchni komórki. Szczepionki powodują, że układ odpornościowy rozpoznaje hemaglutyninę i wytwarza przeciwciała, które biorą ją na cel. Jednak przeciwciała te niemal zawsze łączą się z przednią częścią, główką, hemaglutuniny. A jest to część, która najszybciej ulega mutacją. Z kolei w tylnej części HA znajdują się fragmenty, które mutują bardzo rzadko.
      Nie rozumiemy jeszcze całości, ale z jakiegoś powodu układ odpornościowy nie potrafi skutecznie wyszukiwać tych nieulegających mutacjom części proteiny, mówi profesor Daniel Lingwood z Harvard Medical School. Dlatego też naukowcy poszukują strategii, które pozwolą na zwrócenie uwagi układu odpornościowego na rzadko zmieniające się fragmenty HA.
      Jednym z czynników, dla których układ odpornościowy bierze za cel przednią część HA, a nie tylną, jest prawdopodobnie fakt, że wirus grypy jest gęsto upakowany hemaglutyniną. Tak gęsto, że przeciwciałom znacznie łatwiej jest łączyć się z „główką” HA, niż przecisnąć się i uzyskać dostęp do tylnej części. Wysunęliśmy hipotezę, że kluczem do uchronienia przed przeciwciałami wrażliwych części i do przetrwania wirusa jest geometria jego powierzchni, wyjaśnia doktor Assaf Amitai z MIT.
      Najpierw więc badali wpływ geometrii wirusa na immunodominację za pomocą molekularnej symulacji dynamicznej. Następnie modelowali proces zwany dojrzewaniem powinowactwa przeciwciał. To proces, który zachodzi po tym, gdy komórka B napotka na wirusa i określa, które przeciwciała będą decydujące w odpowiedzi immunologicznej.
      Każdy z receptorów limfocytu B łączy się z inną proteiną wirusa. Gdy konkretny receptor konkretnego limfocytu połączy się silnie z HA, limfocyt B zostaje aktywowany i szybko się namnaża. W procesie tym limfocyt B ulega mutacjom, dzięki czemu niektóre jego receptory jeszcze silniej wiążą się z HA. Następnie te limfocyty, które najsilniej powiązały się z HA przeżywają, a pozostałe, giną. W ten sposób po pewnym czasie powstaje duża populacja limfocytów B, które bardzo silnie wiążą się z HA. Z czasem przeciwciała te coraz lepiej i lepiej biorą na cel konkretny antygen, mówi Charkaborty.
      Modelowanie komputerowe wykazało pewną słabość tego procesu. Okazało się, że gdy podamy człowiekowi typową szczepionkę przeciwko grypie, te limfocyty B, które potrafią silnie połączyć się z tylną częścią HA są podczas procesu dojrzewania powinowactwa w gorszej sytuacji, niż limfocyty wiążące się silnie z główką HA. Po prostu dotarcie do tylnej części hemaglutyniny jest trudniejsze. Do modelu dodano więc symulację działania szczepionki, która jest właśnie opracowywana przez NIH i znajduje się w I fazie badań klinicznych. W szczepionce tej wykorzystano wirusa z rzadziej upakowanymi HA na powierzchni. Okazało się, że wówczas limfocyty B docierające do tylnej części HA radzą sobie znacznie lepiej i dominują pod koniec procesu dojrzewania powinowactwa.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Osoby urodzone pod koniec lat 60. i w latach 70. ubiegłego wieku mogą znajdować się w stanie ciągłego narażenia na infekcję wirusem grypy H3N2, wynika z badań przeprowadzonych na Perelman School of Medicine University of Pennsylvania. Dzieje się tak, gdyż co prawda ich przeciwciała łącza się z wirusem H3N2, ale nie zapobiegają infekcji. Odkryliśmy, że u ludzi w różnym wieku przeciwciała przeciwko H3N2 różnie działają, mówi profesor Scott Hensley.
      Nasze badania wykazały, że infekcje, jakie przeszliśmy w dzieciństwie, mogą wytworzyć odporność na całe życie, a odporność ta decyduje o tym, jak w ciągu życia nasze organizmy reagują na antygenowo odległe szczepy tego samego wirusa, dodaje.
      Większość ludzi przechodzi infekcję grypą nie później niż do 4. roku życia. I to zachorowaniem może nam nadać silną odporność na całe życie. Szczep H3N2 zaczął krążyć wśród ludzi w 1968 roku i w ciągu ostatnich 5 dekad znacząco się zmienił. Na podstawie roku urodzenia można z bardzo dużym prawdopodobieństwem stwierdzić, z jakim szczepem H3N2 się zetknęliśmy w dzieciństwie.
      Naukowcy z University of Pennsylvania przeprowadzili badania przeciwciał w krwi pobranej w sezonie letnim, przed sezonem grypowym z lat 2017/2018. Przebadano krew 140 dzieci w wieku o 1 do 17 lat oraz 212 dorosłych w wieku od 18 do 90 lat. Najpierw sprawdzono samą reakcję przeciwciał na obecność różnych szczepów H3N2, następnie zaś zmierzono poziom przeciwciał, które neutralizowały i tych, które nie neutralizowały wirusa. Przeciwciała, które neutralizują, pomagają zapobiec zachorowaniu, natomiast przeciwciała, które nie neutralizują, pomagają już po infekcji.
      Okazało się, że w krwi osób w wieku 3-10 lat występowało najwięcej przeciwciał neutralizujących współcześnie występujące szczepy H3N2. U większości osób w średnim wieku, urodzonych pod koniec lat 60. i w latach 70. występowały przeciwciała, które nie neutralizowały wirusa, zatem nie zapobiegały zachorowaniu. Większość osób urodzonych w tamtym czasie zyskało odporność na wirusy H3N2, które bardzo różniły się od współczesnych szczepów. U takich osób, gdy dojdzie do kontaktu z wirusem, powstają przeciwciała działające na te regiony współczesnych szczepów, które zostały odziedziczone po starszych szczepach. A takie przeciwciała zwykle nie zapobiegają zachorowaniu, stwierdzają naukowcy.
      Uczeni nie wykluczają, że to właśnie obecność u osób w średnim wieku dużej liczby nieneutralizujących przeciwciał jest przyczyną, dla której H3N2 wciąż krąży w ludzkiej populacji. Ponadto ich badania mogą też wyjaśniać, dlaczego w sezonie 2017/2018 doszło do niezwykle dużej liczby zachorowań wśród osób w średnim wieku w porównaniu z zachorowaniami wśród dzieci i młodych dorosłych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zwierzęta morskie utrzymują równowagę wśród wirusów zamieszkujących wodę. Biolog morski Jennifer Welsh będzie w najbliższy poniedziałek broniła – oczywiście online – pracy doktorskiej na Wolnym Uniwersytecie w Amsterdamie. Jej temat brzmi Marine virus predation by non-host organism.
      Wirusy to najbardziej rozpowszechnione cząstki biologiczne w środowisku morskim. Niewiele jednak wiadomo o potencjalnych skutkach ekologicznych procesu usuwania wirusów przez organizmy nie będące ich gospodarzami, czytamy w artykule, który Welsh opublikowała na łamach Nature. Wiemy, że wirusy, poprzez uśmiercanie czy skracanie życia w inny sposób, regulują populację organizmów będących ich gospodarzami. Pani Welsh chciała się dowiedzieć, jak populacja wirusów jest regulowana przez organizmy nie będące ich gospodarzami.
      Wirusy mogą być pożywieniem dla wielu organizmów. Na przykład ostryżyca japońska filtruje wodę, by pobierać z niej tlen, glony i bakterie. Przy okazji pochłania jednak wirusy. Podczas naszych eksperymentów nie podawaliśmy ostryżycom żadnego pożywienia. Filtrowały wodę tylko po to, by pobrać z niej tlen. Okazało się, że usunęły z wody 12% wirusów, mówi Welsh.
      Jednak to nie ostryżyce najbardziej efektywnie usuwały wirusy. Uplasowały się dopiero na 4. pozycji wśród zwierząt badanych przez Welsh. Z organizmów, które testowaliśmy, najlepiej sprawowały się gąbki, kraby i sercówki. Podczas naszych eksperymentów w ciągu trzech godzin gąbki usunęły z wody aż 94% wirusów. Nawet, gdy co 20 minut dostarczaliśmy do wody kolejny zestaw wirusów gąbki niezwykle efektywnie je usuwały, mówi uczona.
      Welsh dodaje, że uzyskanych przez nią wyników nie można przekładać wprost na środowisko naturalne. Tam sytuacja jest znacznie bardziej złożona. Obecnych jest bowiem wiele innych gatunków, które wpływają na siebie nawzajem. Na przykład, gdy ostryżyca filtruje wodę i w pobliżu znajdzie się krab, ostryżyca zamyka skorupę i przestaje filtrować. Ponadto na zwierzęta mają wpływ ruchy wody, temperatura, promieniowanie ultrafioletowe, wyjaśnia.
      Badania Welsh przydadzą się w akwakulturze. Ryby hoduje się tam w zamknięciu w wodach oceanicznych. W takich farmach słonej wody olbrzyma liczba zwierząt z jednego gatunku jest trzymana w monokulturze. Jeśli w takich hodowli wybuchnie epidemia, istnieje wysokie ryzyko, że patogen rozprzestrzeni się na żyjące w oceanie dzikie populacje. Jeśli do takiej hodowli dodamy wystarczającą liczbę gąbek, możemy zapobiec rozprzestrzenianiu się epidemii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Wirusy należą do najmniej poznanych cząstek na Ziemi. Jako, że nie są one w stanie przeżyć i mnożyć się bez gospodarza, niektórzy nie uważają ich nawet za organizmy żywe. Tymczasem brazylijscy naukowcy odkryli wirusa, którego genom składa się wyłącznie z genów nieznanych nauce.
      Odkrywca nowego wirusa, Jônatas Abrahão z Uniwersytetu Federalnego Minas Gerais, mówi, że to pokazuje, jak wiele jeszcze musimy się o wirusach nauczyć.
      Naukowiec trafił na niezwykłego wirusa gdy poszukiwał wielkich wirusów o rozmiarach bakterii. W lokalnym sztucznym zbiorniku wodnym znalazł nie tylko wielkie wirusy, ale też nowego niewielkiego wirusa, który był niepodobny do wirusów infekujących ameby. Uczeni nazwali go Yarawirusem.
      Mikroorganizm okazał się niezwykły nie tylko ze względu na swoje rozmiary. Gdy naukowcy zsekwencjonowali genom wirusa i porównali go z bazami danych dotyczącymi innych wirusów okazało się, z żaden z genów Yarawirusa nie był wcześniej znany nauce.
      Odkryciem nie jest zaskoczona Elodie Ghedin z New York University, która bada wirusy obecne w ściekach i drogach oddechowych. Uczona mówi, że 95% wirusów znajdowanych w ściekach to nowe organizmy.
      Jeszcze innego odkrycia, tym razem masowego, dokonali Christopher Buck i Michael Tisza, wirusolodzy z amerykańskiego National Cancer Institute. Poszukiwali oni w tkankach ludzkich i zwierzęcych wirusów z kolistym dsDNA. do takich wirusów należy np. wirus brodawczaka ludzkiego. Naukowców interesowały te wirusy, gdyż – przynajmniej niektóre z nich – biorą udział w powstawaniu nowotworów.
      Buck i Tisza wyizolowali fragmenty wirusów z dziesiątków próbek tkanek zwierząt oraz ludzi i poszukiwali tych z kolistym dsDNA. Zidentyfikowali w ten sposób około 2500 wirusów, z których około 600 jest nowych dla nauki.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dlaczego organizmy jednych ludzi lepiej sobie radzą z grypą niż innych? Okazuje się, że decyduje tutaj to, jaki szczep grypy zaatakował nas jako pierwszy w życiu. Naukowcy z Uniwersytetu Kalifornijskiego w Los Angeles (UCLA) i University of Arizona stwierdzili, że nasza zdolność do zwalczenia wirusa grypy zależy nie tylko, z jakimi wirusami zetknęliśmy się w życiu, ale też w jakiej kolejności to nastąpiło.
      Odkrycie to może wyjaśniać, dlaczego organizmy jednych radzą sobie z wirusem grypy A znacznie gorzej niż innych. To właśnie wirus grypy A najczęściej wywołuje epidemie i to on odpowiadał za hiszpankę, grypę azjatycką czy hongkong.
      Już w 2016 roku naukowcy z UCLA i Arizony donieśli, że wystawienie w dzieciństwie na wirusa grypy daje ludziom na całe życie częściową ochronę nawet przed daleko spokrewnionymi szczepami grypy. Mówimy tutaj o „wdrukowaniu immunologicznym”.
      Podczas najnowszych badań ci sami naukowcy postanowili sprawdzić, czy wdrukowanie immunologiczne może wyjaśniać różnice w reakcji ludzi na już istniejące szczepy wirusa grypy oraz na ile wyjaśnia to obserwowane różnice pomiędzy grupami wiekowymi.
      Naukowcy przeanalizowali dane udostępnione im przez Wydział Usług Zdrowotnych stanu Arizona.
      W ciągu ostatnich kilku dekad najbardziej rozpowszechnionymi szczepami grypy na świecie są H3N2 oraz H1N1. Szczep H3N2 powoduje większość ciężkich zachorowań u osób starszych i odpowiada za większość zgonów z powodu grypy. Z kolei H1N1 atakuje przede wszystkim młodych dorosłych oraz osoby w średnim wieku i rzadziej jest przyczyną zgonów.
      Analiza ujawniła występowanie wyraźnego wzorca. Osoby, które w dzieciństwie zetknęły się ze szczepem H1N1 z mniejszym prawdopodobieństwem trafiają do szpitala gdy w późniejszym wieku zaraża się tym szczepem, niż osoby, które w dzieciństwie najpierw zetknęły się ze szczepem H3N2. Z kolei osoby, które jako dzieci najpierw zaraziły się H3N2 były lepiej chronione w późniejszym wieku przed tym szczepem.
      Uczeni przeanalizowali też pokrewieństwo pomiędzy oboma szczepami. Zauważyli, że należą one do dwóch osobnych gałęzi drzewa ewolucyjnego grypy. Stwierdzili również, że jeśli w dzieciństwie zachorujemy na grypę, to nasz organizm będzie lepiej przygotowany do walki z grypą w przyszłości, ale ochrona taka jest lepsza, jeśli wirus, który zaatakuje nas w przyszłości, należy do tej samej grupy, co wirus z przeszłości.
      Zauważono jednak inny, trudniejszy do wyjaśnienia fenomen. Okazało się bowiem, że osoby, które jako dzieci zostały najpierw zarażone bliskim kuzynem szczepu H1N1 – szczepem H2N2 – nie były później lepiej chronione przed H1N1. To zaskakujące odkrycie, gdyż szczepy te są blisko spokrewnione, a wcześniejsze analizy pokazały, że wystawienie na jeden szczep powinno w niektórych okolicznościach chronić przed jego bliskim kuzynem.
      Nasz układ odpornościowy ma często problem z rozpoznaniem i obroną przed blisko spokrewnionymi szczepami grypy sezonowej, nawet jeśli to bliscy bracia i siostry szczepu, który krążył zaledwie kilka lat temu. To zaskakujące odkrycie, gdyż nasze badania nad ptasią grypą pokazują, że nasza pamięć immunologiczna sięga naprawdę głęboko. Układ odpornościowy jest w stanie rozpoznać i bronić się przed krewniakami dalszego rzędu wirusów, z którymi zetknęliśmy się w dzieciństwie, mówi główna autorka badań, Katelyn Gostic.
      Naukowcy zauważyli, że na przykład osoby, które jako dzieci zaraziły się grypą w roku 1955 – gdy krążył wirus H1N1, ale nie wirus H3N2 – z większym prawdopodobieństwem trafiali w ubiegłym roku do szpitali, gdy w populacji były obecne oba szczepy. Nie zyskujemy tak dobrej i trwałej odporności na drugi szczep, z którym się stykamy, mówi współautor badań, Michael Worobey.
      Uczeni mają nadzieję, że ich odkrycie powoli lepiej przewidzieć, które grupy wiekowe będą szczególnie narażone podczas kolejnych sezonów grypowych. To zaś pozwoli systemom opieki zdrowotnej lepiej zdecydować, kto jaką szczepionkę powinien otrzymać.
      Ze szczegółami badań można zapoznać się na łamach PLOS Pathogens.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...