Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Do infekcji bakteryjnych dochodziło już 2 miliardy lat temu

Recommended Posts

Przodkowie legionelli, bakterii wywołującej legionellozę, infekowali komórki eukariotyczne – czyli zawierające jądro komórkowe – już dwa miliardy lat temu, donoszą naukowcy z Uniwersytetu w Uppsali. Do infekcji zaczęło więc dochodzić wkrótce po tym, jak eukarioty rozpoczęły żywienie się bakteriami. Nasze badania pozwalają lepiej zrozumieć, jak pojawiły się szkodliwe bakterie oraz jak złożone komórki wyewoluowały z komórek prostych, mówi główny autor badań, profesor Lionel Guy.

Z badań wynika, że już przed 2 miliardami lat przodkowie legionelli byli zdolni do uniknięcia strawienia przez eukarioty. Co więcej, byli w stanie wykorzystać komórki eukariotyczne do namnażania się.

Bakterie z rodzaju Legionella należą do rzędu Legionellales. Odkryliśmy, że przodek całego rzędu pojawił się przed 2 miliardami lat, w czasach, gdy komórki eukariotyczne wciąż powstawały, ewoluując od prostych form komórkowych, to znanej nam dzisiaj formy złożonej. Sądzimy, że Legionellales były jedynymi z pierwszych mikroorganizmów zdolnych do infekowania komórek eukariotycznych, wyjaśnia Andrei Guliaev z Wydziału Biochemii Medycznej i Mikrobiologii.

Jak mogło dojść do pierwszych infekcji i pojawienia się u bakterii zdolności do zarażania, namnażania się i wywoływania chorób? Pierwszym etapem była fagocytoza, w wyniku której organizm eukariotyczny, taki jak ameba, wchłonął przodka legionelli, by się nim pożywić. Następnym etapem powinno być jego strawienie i wykorzystanie w roli źródła energii. Jednak mikroorganizm potrafił się bronić i to on wykorzystał amebę do namnażania się.

Szwedzcy naukowcy odkryli, że wszystkie bakterie z rodzaju Legionellales posiadają taki sam mechanizm molekularny chroniący przed strawieniem, co legionelloza. To zaś oznacza, że możliwość infekowania eukariotów pojawiła się u wspólnego przodka rodzaju Legionellales. A skoro tak, to fagocytoza musiała istnieć już przed 2 miliardami lat, gdy ten przodek się pojawił.

Odkrycie stanowi ważny argument w toczącej się dyskusji, co było pierwsze. Czy najpierw pojawiły się mitochondria, przejęte przez organizmy eukariotyczne od innej grupy bakterii, które z czasem stały się centrami energetycznymi naszych komórek, czy też najpierw była fagocytoza, uważana za niezbędną do przejęcia mitochondriów, ale bardzo kosztowna z energetycznego punktu widzenia.

Niektórzy badacze sądzą, że najpierw musiał pojawić się mitochondria, które zapewniły energię dla kosztowanego procesu fagocytozy. Jednak nasze badania sugerują, że fagocytoza istniała już 2 miliardy lat temu, a mitochondria pojawiły się później, mówi Lionel Guy.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Badania uczonych z The Australian National University mogą doprowadzić do pojawienia się lepszych metod walki z rzadkimi, ale niezwykle śmiertelnymi infekcjami bakteryjnymi. Mowa o bakteriach powodujących gangrenę, sepsę czy tężec. Na szczęście ta grupa bakterii rzadko powoduje infekcje. W USA jest mniej niż 1000 takich przypadków rocznie. My skupiliśmy się bakterii Clostridium septicum, która w ciągu 2 dni zabija 80% zakażonych. Jest niezwykle śmiercionośna, mówi profesor Si Ming Man.
      Australijczycy odkryli, że Clostridium septicum bardzo szybko zabija komórki naszego organizmu, gdyż uwalnia toksynę działającą jak młotek. Toksyna ta wybija dziury w komórkach. To, oczywiście, wzbudza alarm w naszym układzie odpornościowym. Jednak gdy ten przystępuje do działania, może wyrządzić więcej szkód niż korzyści. Układ odpornościowych ma dobre zamiary, próbuje zwalczać bakterię. Problem jednak w tym, że w tym procesie zarażone komórki dosłownie eksplodują i umierają. Gdy bakteria mocno się rozprzestrzeni i w całym ciele mamy wiele umierających komórek, dochodzi do sepsy i wstrząsu. Dlatego pacjenci bardzo szybko umierają, mówi uczony.
      Obecnie mamy niewiele sposób leczenia w takich przypadkach. Jednak analizy Mana i jego zespołu dają nadzieję, że opcji tych będzie więcej. Nasze badania pokazały, że możemy rozpocząć prace nad nowymi terapiami, na przykład nad wykorzystaniem leków do neutralizacji toksyny. Wykazaliśmy też, że już w tej chwili w testach klinicznych znajdują się leki, które mogą zablokować kluczowy, odpowiedzialny za rozpoznanie toksyny, receptor układu immunologicznego. Takie leki uniemożliwiłyby układowi odpornościowemu zbyt gwałtowną reakcję na toksynę. Łącząc tego typu leki moglibyśmy opracować terapię ratującą życie, dodaje Man.
      Dodatkową korzyść odniósłby przemysł, gdyż ta sama bakteria zabija owce i krowy, nowe leki można by więc stosować też w weterynarii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Specjaliści od dawna poszukują bezpośredniego związku pomiędzy aktywnością neuronów w mózgu, a aktywnością bakterii w układzie pokarmowym. Francuscy uczeni z Instytutu Pasteura poinformowali właśnie na łamach Science, że w modelu zwierzęcym neurony w podwzgórzu bezpośrednio wykrywają zmiany aktywności bakterii w jelitach i odpowiednio dostosowują do tego apetyt i temperaturę ciała myszy. To dowodzi, że istnieje bezpośrednia komunikacja pomiędzy mikrobiomem jelit a mózgiem. Być może uda się to wykorzystać do opracowania metod walki z cukrzycą czy otyłością.
      Związki uwalniane przez mikrobiom trafiają do krwi i mogą wpływać na różne procesy fizjologiczne gospodarza, takie jak działanie układu odpornościowego, metabolizm czy funkcje mózgu. Metabolity mikroorganizmów, w tym krótkołańcuchowe kwasy tłuszczowe i pochodne tryptofanu, regulują bardzo wiele procesów. Składowe strukturalne mikroorganizmów są jednak wykrywane przez receptory wykrywające wzorce (PRR), które sygnalizują obecność wirusów, bakterii i grzybów na błonach śluzowych, w tkankach i komórkach. Wiemy, że składniki bakteryjne wpływają na działanie mózgu, a PRR są powiązane z zaburzeniami jego pracy. Jednak nie wiemy, czy neurony w mózgu mogą bezpośrednio wykrywać komponenty bakteryjne i czy bakterie mogą regulować procesy fizjologiczne poprzez regulowanie neuronów w mózgu, stwierdzają autorzy badań.
      Naukowcy skupili się na receptorze NOD2 obecnym w komórkach odpornościowych. Należy on do grupy rozpoznających wzorce receptorów wewnątrzkomórkowych. Receptor ten wykrywa muropeptydy wchodzące w skład ścian komórkowych bakterii. Wiadomo, że u myszy, w neuronach których nie dochodzi do ekspresji Nod2, pojawiają się zmiany odnośnie spożywania pokarmu, zakładania gniazda i temperatury ciała. Naukowcy wykorzystali więc techniki obrazowania, by zidentyfikować te obszary mózgu, które reagują na doustne podawanie muropeptydów. Sprawdzali też, jak zmieniała się aktywność neuronów po podaniu myszom muropeptydów. Stworzyli też genetycznie zmodyfikowane myszy, w których podwzgórzach nie dochodziło do ekspresji Nod2. To właśnie podwzgórze reguluje temperaturę ciała i przyjmowanie pokarmów.
      Na podstawie tak prowadzonych eksperymentów stwierdzili, że do ekspresji receptora NOD2 dochodzi w różnych regionach mózgu myszy, w szczególności zaś w podwzgórzu. A w kontakcie z muropeptydami ekspresja ta jest tłumiona.
      Muropeptydy obecne w jelitach, krwi i mózgu to dowody na proliferację bakterii. To niezwykłe odkrycie pokazuje, że fragmenty bakterii bezpośrednio wpływają na tak ważny ośrodek w mózgu, jakim jest podwzgórze, o którym wiemy, że reguluje kluczowe funkcje organizmu, jak temperatura, reprodukcja, głód i pragnienie, stwierdzają naukowcy.
      Uczeni mają nadzieję, że dzięki zdobytej wiedzy i przyszłym interdyscyplinarnym badaniom – w które powinni zostać zaangażowani neurolodzy, immunolodzy i mikrobiolodzy – powstaną w przyszłości nowe leki skuteczniej zwalczające takie zaburzenia metaboliczne jak otyłość i cukrzyca.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Niejednokrotnie informowaliśmy, że rosnąca antybiotykooporność – wywołana nadmiernym używaniem antybiotyków w medycynie, hodowli zwierząt czy kosmetykach – stanowi coraz poważniejsze zagrożenie. Na łamach The Lancet ukazały się właśnie wyniki pierwszej kompletnej ogólnoświatowej analizy skutków antybiotykooporności. Wynika z niej, że w 2019 roku patogeny oporne na działanie antybiotyków zabiły 1,24 miliona osób i przyczyniły się do śmierci 4,95 miliona kolejnych.
      Autorzy analizy oszacowali liczbę zgonów w 204 krajach i terytoriach spowodowanych przez 23 antybiotykooporne szczepy bakterii oporne na co najmniej jeden z 88 antybiotyków. Dane zebrano ze specjalistycznej literatury, szpitali, systemów ochrony zdrowia i innych źródeł. Objęły one w sumie 471 milionów rekordów. Następnie wykorzystano modele statystyczne, by oszacować wpływ antybiotykoopornych szczepów na poszczególne państwa.
      Autorzy badań szacowali liczbę zgonów, w których infekcja odgrywała rolę, proporcję zgonów w stosunku do liczby infekcji, proporcję zgonów przypisywanych konkretnemu patogenowi, rozpowszechnienie antybiotykoopornego szczepu konkretnego patogenu oraz nadmiarowe ryzyko zgonu powiązane z występowaniem na danym terenie takiego patogenu. Na tej podstawie udało się oszacować zarówno liczbę zgonów powodowanych bezpośrednio przez antybiotykooporne bakterie, jak i liczbę zgonów powiązanych z ich występowaniem.
      Najbardziej dotknięte problemem antybiotykooporności są kraje o niskich i średnich dochodach. A Afryce Subsaharyjskiej liczba ofiar antybiotykoopornych bakterii wynosiła w 2019 roku średnio aż 27,3 na 100 000. Na przeciwnym biegunie znajduje się Australazja z liczbą 6,5 zgonu na 100 000.
      Ludzi na całym świecie zabijają przede wszystkim antybiotykooporne szczepy Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Streptococcus pneumoniae, Acinetobacter baumannii i Pseudomonas aeruginosa. Z analiz wynika, że bezpośrednio zabiły one łącznie 929 000 osób oraz przyczyniły się do 3,57 miliona zgonów powiązanych z antybiotykoopornymi bakteriami.
      Najwięcej, bo ponad 100 000, ofiar ma na koncie oporny na metycylinę gronkowiec złocisty (MRSA), który spowodował zgon ponad 100 000 osób. Inne wymienione patogeny zabijały od 50 do 100 tysięcy osób. Wbrew pozorom liczby sumują się do wspomnianych 900 tysięcy, gdyż naukowcy liczyli nie gatunki, a szczepy, zatem na przykład policzono zarówno ofiary opornej na karbapenemy K. pneumonie jak i ofiary K. pneumoniae opornej na cefalosporyny trzeciej generacji.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Świat zmaga się z rosnącym kryzysem antybiotykooporności. Nadmierne używanie antybiotyków w medycynie, przemyśle spożywczym czy kosmetycznym, prowadzi do pojawiania się bakterii opornych na działanie antybiotyków. Przedostające się do środowiska antybiotyki, a w niektórych rzekach ich stężenie 300-krotnie przekracza bezpieczny poziom, wymuszają na patogenach ciągłą ewolucję w kierunku antybiotykooporności. Nawet w jelitach dzieci odkryto setki bakteryjnych genów antybiotykooporności. Bez nowych antybiotyków lub innych rozwiązań realny staje się scenariusz, w którym ludzie znowu zaczną umierać z powodu zwykłych zakażeń czy niegroźnych obecnie chorób.
      Jedną ze strategii spoza repertuaru środków chemicznych jest wykorzystanie metod fizycznych, jak światło ultrafioletowe, promieniowanie gamma czy ciepło. Metody są skuteczne w dezaktywowaniu patogenów, jednak prowadza do poważnych uszkodzeń tkanek, przez co nie mogą być stosowane w praktyce klinicznej.
      Dlatego też część naukowców zainteresowała się światłem widzialnym. W niskim natężeniu jest ono bezpieczne dla tkanek, a jednocześnie posiada zdolność dezaktywacji bakterii, wirusów i innych patogenów. Zajmujących się tym problemem specjalistów szczególnie interesują lasery femtosekundowe, emitujące ultrakrótkie impulsy światła, których czas trwania liczy się w femtosekundach (1 femtosekunda to 1/1 000 000 000 000 000 sekundy).
      Naukowcy z Washington University School of Medicine wykazali, że ultrakrótkie impulsy w zakresie światła widzialnego – o długości fali 415–425 nm – mogą być efektywną bronią przeciwko antybiotykoopornym bakteriom i ich przetrwalnikom.
      Naukowcy przetestowali laser na na metycylinoopornym gronkowcu złocistym (MRSA) oraz E. coli. Bakterie te są wysoce odporne na działanie licznych środków fizycznych i chemicznych. Laser testowano też na przetrwalnikach Bacillus cereus, które mogą powodować zatrucia pokarmowe i są w stanie przetrwać gotowanie. Testy wykazały, że laser dezaktywuje 99,9% bakterii poddanych jego działaniu.
      Naukowcy wyjaśniają, że przy pewnej mocy ich laser zaczyna dezaktywować wirusy. Po zwiększeniu mocy robi to samo z bakteriami. Jego światło pozostaje jednak bezpieczne dla ludzkich tkanek. Dopiero zwiększenie mocy o cały rząd wielkości zabija komórki. Zatem istnieje pewne okienko terapeutyczne, które pozwala na jego bezpieczne wykorzystanie.
      Ultrakrótkie impulsy laserowe dezaktywują patogeny, nie szkodząc ludzkim białkom i komórkom. Wyobraźmy sobie, że przed zamknięciem rany, operujący chirurg mógłby zdezynfekować ją za pomocą lasera. Myślę, że już wkrótce technologia ta może być wykorzystywana do dezynfekcji produktów biologicznych in vitro, a w niedalekiej przyszłości do dezynfekcji krwioobiegu. Pacjentów można by poddać dializie i jego krew przepuścić przez laserowe urządzenie ją dezynfekujące, mówi główny autor badań Shew-Wei Tsen.
      Tsen wraz z profesorem Samuelem Achilefu od lat badają zdolność ultrakrótkich impulsów laserowych do zabijania patogenów. Już wcześniej wykazali, że dezaktywują one wirusy i „zwykłe” bakterie. Teraz, we współpracy z profesor mikrobiologii Shelley Haydel z Arizona State University, rozszerzyli swoje badania na przetrwalniki oraz antybiotykooporne bakterie.
      Wirusy i bakterie zawierają gęsto upakowane struktury proteinowe. Laser dezaktywuje je wprowadzając te struktury w tak silne wibracje, że niektóre z wiązań w proteinach pękają. Taki pęknięty koniec stara się jak najszybciej z czymś połączyć i najczęściej łączy się z inną strukturą, niż ta, z którą był dotychczas powiązany. W ten sposób wewnątrz patogenu pojawiają się nieprawidłowe połączenia wewnątrz protein i pomiędzy nimi, co powoduje, że białka nie funkcjonują prawidłowo i patogen przestaje funkcjonować.
      Wszystko, co pochodzi od ludzi czy zwierząt może zostać zanieczyszczone patogenami. Wszelkie produkty krwiopochodne, zanim zostaną wprowadzone do organizmu pacjenta, są skanowane pod kątem obecności patogenów. Problem jednak w tym, że musimy wiedzieć, czego szukamy. Jeśli pojawiłby się nowy wirus krążący we krwi, jak np. miało to miejsce w latach 70. i 80. w przypadku wirusa HIV, to mógłby dostać się z takimi preparatami do krwioobiegu. Ultrakrótkie impulsy lasera to metoda, która pozwali upewnić się, że produkty krwiopochodne są wolne od patogenów. Zarówno tych znanych, jak i nieznanych, mówi Tsen.
      Więcej na temat badań grupy Tsena przeczytamy na łamach Journal Biophotonic.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Michał Styczyński z Wydziału Biologii Uniwersytetu Warszawskiego odkrył, że bakterie z Antarktyki wytwarzają naturalną substancję z grupy melanin. Można by ją wykorzystać w kremach z filtrem UV, zastępując syntetyczny oksybenzon, który przyczynia się do wymierania koralowców. Środek ten zaburza gospodarkę hormonalną parzydełkowców, uniemożliwiając im rozmnażanie się.
      Uczony zauważył, że pod wpływem odpowiedniego stresu środowiskowego bakterie wytwarzają substancję z grupy melanin. Może ona potencjalnie posłużyć do zastąpienia nią oksybenzonu. Antarktyka jest jednym z najbardziej ekstremalnych regionów na Ziemi. Charakteryzuje się ona bardzo niskimi temperaturami, dochodzącymi do -90 °C, wysoką ekspozycją na promieniowanie UV, niską dostępnością substancji odżywczych, a także obecnością silnie zasolonych zbiorników wodnych. Organizmy występujące w tak skrajnych warunkach musiały wykształcić szereg cech adaptacyjnych umożliwiających im przeżycie. Zimnolubne bakterie, określane jako psychrofile lub psychrotoleranty, wytwarzają m.in. specyficzne metabolity wtórne, takie jak barwniki ochronne, dzięki którym mogą optymalnie funkcjonować w polarnym środowisku, mówi Styczyński. Naturalną melaninę można by wytwarzać na skalę przemysłową namnażając bakterie w laboratorium i poddając je następnie odpowiedniej stymulacji.
      Jednak to nie jedyna zaleta bakterii arktycznych. Badania wykazały, że wytwarzają one też karotenoidy posiadające bardzo silne właściwości przeciwutleniające. Również i one mogą odegrać ważną rolę. Wytwarzane przez bakterie związki, ze względu na swoją specyficzną, wielonienasyconą strukturę i wynikające z niej właściwości przeciwutleniające, zapobiegają szkodliwemu działaniu promieniowania UV. Ponadto odgrywają one istotną rolę w kontrolowaniu płynności błon i chronią komórki bakteryjne przed uszkodzeniem na skutek zamarzania. Tego rodzaju substancje mają zdolność wychwytywania wolnych rodników, dlatego są w centrum zainteresowania laboratoriów produkujących preparaty kosmetyczne do pielęgnacji skóry o działaniu przeciwstarzeniowym. Na rynku obowiązują jednak ścisłe normy i restrykcje, które definiują zawartość zanieczyszczeń pochodzących z syntezy chemicznej. Nasze odkrycia wskazują, że przemysł kosmetyczny mógłby na dużo większą skalę korzystać z substancji pochodzenia naturalnego, dodaje Michał Styczyński.
      Niezwykle ważną cechą bakterii antarktycznych jest fakt, że łatwo jest je hodować. Ze względu na ich fizjologię organizmy te mają niewielkie wymagania odnośnie temperatury i dostępności pokarmu. Nie ma żadnych większych przeszkód natury technologicznej, by tą drogą pozyskiwać naturalne substancje na skalę przemysłową. Bakterie z Antarktydy mogą też wspomagać wzrost roślin. Mogą zwiększać dostępność mikroelementów, co można wykorzystać w rolnictwie. W praktyce można więc wykorzystać szczepy bakterii do zwiększania jakości i biomasy roślin uprawnych, chronić je przed chorobami, a także redukować ilość stosowanych nawozów chemicznych, wyjaśnia naukowiec.
      Komercjalizacją odkryć ma zająć się spółka Biotemist, utworzona przy Uniwersytecie Warszawskim.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...