Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Przejścia fazowe cieczy pozwalają wirusom przeżyć poza organizmem?

Rekomendowane odpowiedzi

Wirusolodzy od dawna wiedzą o niezwykłym zjawisku dotyczącym wirusów atakujących drogi oddechowe. Dla patogenów tych naturalnym środowiskiem są ciepłe i wilgotne drogi oddechowe. Ich względna wilgotność wynosi zwykle 100%. Wystawienie na bardziej suche powietrze poza organizmem powinno szybko niszczyć wirusy. Jednak wykres czasu ich przeżywalności w powietrzu układa się w literę U.

Przy wysokiej wilgotności wirus może przetrwać dość długo, gdy wilgotność spada, czas ten ulega skróceniu, ale w pewnym momencie trend się odwraca i wraz ze spadającą wilgotnością powietrza czas przetrwania wirusów... zaczyna się wydłużać.

Naukowcy od dawna zastanawiali się, dlaczego przeżywalność wirusów zaczyna rosnąć, gdy względna wilgotność powietrza zmniejszy się do 50–80 procent. Odpowiedzią mogą być przejścia fazowe w ośrodku, w którym znajdują się wirusy. Ray Davis i jego koledzy z Trinity University w Teksanie zauważyli, że w bogatych w białka aerozole i krople – a wirusy składają się z białek – w pewnym momencie wraz ze spadkiem wilgotności zachodzą zmiany strukturalne.

Jedna z dotychczasowych hipotez wyjaśniających kształt wykresu przeżywalności wirusów w powietrzu o zmiennej wilgotności przypisywała ten fenomen zjawisku, w wyniku którego związki nieorganiczne znajdujące się w kropli, w której są wirusy, w miarę odparowywania wody migrują na zewnątrz kropli, krystalizują i tworzą w ten sposób powłokę ochronną wokół wirusów.
Davis i jego zespół badali aerozole i kropelki złożone z soli i białek, modelowych składników dróg oddechowych. Były one umieszczone na specjalnym podłożu wykorzystywanym do badania możliwości przeżycia patogenów.

Okazało się, że poniżej 53-procentowej wilgotności krople badanych płynów tworzyły złożone wydłużone kształty. Pod mikroskopem było zaś widać, że doszło do rozdzielenia frakcji płynnej i stałej. Zdaniem naukowców, to dowód na przemianę fazową, podczas której jony wapnia łączą się z proteinami, tworząc żel. Zauważono jednak pewną subtelną różnicę. O ile w aerozolach do przemiany takiej dochodzi w ciągu sekund, dzięki czemu wirusy mogą przeżyć, to w większych kroplach proces ten zachodzi wolnej i zanim dojdzie do chroniącego wirusy przejścia fazowego, patogeny mogą zginąć.

Naukowcy sądzą, że kluczowym elementem dla zdolności przeżycia wirusów, które wydostały się z dróg oddechowych, jest skład organiczny kropli i aerozoli. Ten zaś może zależeć od choroby i stopnia jej zaawansowania. Następnym etapem prac nad tym zagadnieniem powinno być systematyczne sprawdzenie składu różnych kropli oraz wirusów w nich obecnych, co pozwoli zrozumieć, jak działa proces dezaktywacji wirusów w powietrzu, mówi Davis.

Zdaniem eksperta od aerozoli, Petera Raynora z University of Minnesota, badania takie można będzie w praktyce wykorzystać np. zapewniając odpowiedni poziom wilgotności powietrza w budynkach w zimie, nie tylko dla komfortu ludzi, ale również po to, by stworzyć najmniej korzystne warunki dla przetrwania wirusów.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Przeżycie noworodka z wadą wrodzoną zależy od tego, gdzie się urodził. Dowiedli tego naukowcy z 74 krajów, badając blisko 4 tys.dzieci z wrodzonymi wadami. W międzynarodowym badaniu udział wzięli także naukowcy z UMW.
      W międzynarodowym badaniu Global PaedSurg Collaborative Study opublikowanym w The Lancet, w którym wzięli udział także badacze z Uniwersytetu Medycznego we Wrocławiu, zbadano ryzyko śmierci prawie 4 tys. dzieci z wadami wrodzonymi urodzonych w 264 szpitalach na całym świecie.
      Dzięki kooperacji naukowców z całego świata udało nam się wykazać, że dzieci z wadami wrodzonymi przewodu pokarmowego mają ok. 40 proc. ryzyko zgonu w krajach o niskim dochodzie – wyjaśnia prof. dr hab. Dariusz Patkowski, z Kliniki Chirurgii i Urologii Dziecięcej Uniwersyteckiego Szpitala Klinicznego we Wrocławiu. Jeśli jednak porównamy te wyniki do krajów zamożniejszych, to okazuje się że to ryzyko spada do 20 proc. w krajach średniozamożnych i do zaledwie 5 proc. w krajach o najwyższych dochodach.
      Naukowcy porównali m.in. noworodki z wytrzewieniem wrodzonym, wadą, przy której zauważa się największą różnicę w śmiertelności. Nawet 90 proc. dzieci z tym schorzeniem umiera w krajach o niskim dochodzie, w porównaniu z jedynie 1 proc. zgonów w krajach o wysokim dochodzie. W tych ostatnich, większość dzieci z wytrzewieniem wrodzonym będzie mogła wieść normalne życie.
      Geografia nie powinna determinować wyników leczenia dzieci z wadami, które podlegają leczeniu chirurgicznemu – mówi dr Naomi Wright, która poświęciła ostatnie cztery lata na badanie rozbieżności w wynikach leczenia na świecie. Celem Zrównoważonego Rozwoju jest wyeliminowanie możliwych do uniknięcia zgonów noworodków i dzieci poniżej 5 roku życia do roku 2030. Nie da się tego osiągnąć bez pilnych działań na rzecz poprawy opieki chirurgicznej nad dziećmi w krajach o niskim i średnim dochodzie.
      Międzynarodowy zespół naukowców podkreśla potrzebę skupienia się na poprawie opieki chirurgicznej nad noworodkami w krajach o niskim i średnim dochodzie na całym świecie.
      W ciągu ostatnich 25 lat udało się znacząco zmniejszyć śmiertelność dzieci poniżej 5. roku życia poprzez zapobieganie i leczenie chorób zakaźnych – podkreśla prof. Dariusz Patkowski. Zbyt mało natomiast medycyna w globalnym ujęciu skupiała się na poprawie opieki chirurgicznej nad dziećmi. Dlatego rośnie odsetek zgonów w przypadku chorób wymagających interwencji chirurgicznej. A należy podkreślić, że wady wrodzone są obecnie piątą najczęstszą przyczyną zgonów dzieci poniżej 5. roku życia na świecie, przy czym większość zgonów ma miejsce w okresie noworodkowym.
      Co ważne, w krajach wysokorozwiniętych większość kobiet w trakcie ciąży jest pod stałą kontrolą lekarza i jest poddawanych badaniom USG w celu szybkiego wykrycia ewentualnych wad wrodzonych. Podejrzenie ich wystąpienia umożliwia kobiecie poród w szpitalu z dostępną opieką chirurgiczną, aby dziecko mogło otrzymać pomoc zaraz po urodzeniu. W krajach mniej zamożnych natomiast dzieci z takimi samymi schorzeniami często docierają do chirurga z opóźnieniem i już w złym stanie klinicznym, co znacząco zwiększa ryzyko zgonu.
      Badanie podkreśla również znaczenie opieki okołooperacyjnej w ośrodku chirurgicznym.  Dostępu do respiratorów i żywienia pozajelitowego znacząco zwiększa szansę na przeżycie noworodków z poważnymi schorzeniami. Z większym ryzykiem zgonu naukowcy wiążą także brak wykwalifikowanego personelu anestezjologicznego i niestosowanie kontrolnych list bezpieczeństwa w czasie operacji.
      Jak wykazali naukowcy poprawa przeżywalności noworodków w krajach o niskim i średnim dochodzie musi objąć trzy kluczowe elementy:
      – doskonalenie diagnostyki przedporodowej i poród w szpitalu z zapleczem dziecięco-chirurgicznym,
      – poprawę opieki chirurgicznej nad dziećmi urodzonymi w szpitalach powiatowych i zapewnienie bezpiecznego i szybkiego transportu do dziecięcego centrum chirurgicznego,
      – poprawę opieki okołooperacyjnej w dziecięcym centrum chirurgicznym.
      Badacze przyznają, że wymaga to sprawnej współpracy i planowania pomiędzy zespołami położniczymi, neonatologicznymi i chirurgicznymi w centrach chirurgicznych dla dzieci, jak również edukacji i nawiązywania kontaktów ze szpitalami referencyjnymi. Przekonują tym samym, że obok lokalnych inicjatyw, opieka chirurgiczna nad noworodkami i dziećmi musi być włączona do krajowej i międzynarodowej polityki w zakresie ochrony zdrowia dzieci i nie powinna być dłużej zaniedbywana w kontekście globalnego zdrowia.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Firma BitDefender poinformowała o powrocie wirusa, który po raz pierwszy pojawił się przed sześciu laty na witrynie firmy Hewlett-Packard. Tym razem szkodliwy kod znaleziono w sterowniku jednego z urządzeń sprzedawanych przez HP.
      Funlove, bo o nim mowa, został odkryty na serwerze FTP wspomnianego koncernu. Przedstawiciele HP zostali o nim poinformowali i usunęli już aplikację zawierającą szkodliwy kod.
      To dowód na to, jak ważne jest filtrowanie ruchu wychodzącego w środowisku biznesowym. Pokazuje też jak wielkie zdolności do przetrwania ma szkodliwe oprogramowanie – powiedział Bogdan Dumitru, odpowiedzialny w BitDefenderze za sprawy technologii.
      Funlove usiłuje zdobyć przywileje administracyjne w systemie Windows NT dając w ten sposób cyberprzestępcom zdalny dostęp do zaatakowanej maszyny. Wirus infekuje również systemy Windows 9x, ME oraz Windows 2000.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Profesor Sonia Kreidenweis i jej grupa badawcza z Colorado State University znalazła region o najczystszym powietrzu na Ziemi. Uczeni zidentyfikowali dziewiczy region, który nie został zmieniony działalnością człowieka. Choć trudno to sobie wyobrazić, uczeni stwierdzili, że graniczna warstwa powietrza nad Oceanem Południowym jest wolna od aerozoli emitowanych przez człowieka.
      Naukowcy, którzy postanowili poszukać jak najbardziej czystego powietrza na Ziemi, podejrzewali, że powietrze znajdujące się w odległych regionach Oceanu Południowego może być najmniej narażone na wpływ czynników antropogenicznych.
      Wykorzystaliśmy bakterie znajdujące się w powietrzu nad Oceanem Południowym w formie narzędzia diagnostycznego dzięki któremu zbadaliśmy kluczowe właściwości dolnych warstw atmosfery. Okazało się, na przykład, że aerozole kontrolujące właściwości chmur nad Oceanem Południowym są silnie powiązane z procesami biologicznymi w oceanie, a Antarktyka wydaje się izolowana od rozprzestrzeniających się na południe mikroorganizmów i składników odżywczych pochodzących z kontynentów. To wskazuje, że Ocean Południowy jest jednym z nielicznych regionów, które tylko w minimalnym stopniu zostały dotknięte działalnością człowieka, mówi współautor badań, Thomas Hill.
      W ramach badań naukowcy pobrali próbki powietrza z warstwy granicznej, która ma  bezpośredni kontakt z oceanem. Próbki pobierano podczas podróży statkiem badawczym RV Investigator, który płynął z Tasmanii do granicy antarktycznych lodów.
      Jun Uetake, główny autor badań, dokonywał analizy genetycznej mikroorganizmów znalezionych w powietrzu. Atmosfera pełna jest takich mikroorganizmów, które wiatr przenosi na setki i tysiące kilometrów. Sekwencjonowanie DNA, badania trajektorii wiatru i śledzenie źródła wykazały, że mikroorganizmy pochodzą z oceanu. Naukowiec zauważył też znaczne różnice w składzie bakteryjnym pomiędzy różnymi szerokościami geograficznymi, co wskazywało, że aerozole z dużych mas lądowych, tam, gdzie ma miejsce ludzka aktywność, nie docierają do Antarktyki.
      Wyniki tych badań stoją w wyraźnej sprzeczności z tym, co zauważyli inni naukowcy badający powietrze nad oceanami na Półkuli Północnej i w regionach subtropikalnych. Tam zawsze stwierdzano, że większość mikroorganizmów pochodzi z lądów.
      Powietrze nad Oceanem Południowym było tak czyste, że Uetake miał niewiele materiału DNA do badań.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zwierzęta morskie utrzymują równowagę wśród wirusów zamieszkujących wodę. Biolog morski Jennifer Welsh będzie w najbliższy poniedziałek broniła – oczywiście online – pracy doktorskiej na Wolnym Uniwersytecie w Amsterdamie. Jej temat brzmi Marine virus predation by non-host organism.
      Wirusy to najbardziej rozpowszechnione cząstki biologiczne w środowisku morskim. Niewiele jednak wiadomo o potencjalnych skutkach ekologicznych procesu usuwania wirusów przez organizmy nie będące ich gospodarzami, czytamy w artykule, który Welsh opublikowała na łamach Nature. Wiemy, że wirusy, poprzez uśmiercanie czy skracanie życia w inny sposób, regulują populację organizmów będących ich gospodarzami. Pani Welsh chciała się dowiedzieć, jak populacja wirusów jest regulowana przez organizmy nie będące ich gospodarzami.
      Wirusy mogą być pożywieniem dla wielu organizmów. Na przykład ostryżyca japońska filtruje wodę, by pobierać z niej tlen, glony i bakterie. Przy okazji pochłania jednak wirusy. Podczas naszych eksperymentów nie podawaliśmy ostryżycom żadnego pożywienia. Filtrowały wodę tylko po to, by pobrać z niej tlen. Okazało się, że usunęły z wody 12% wirusów, mówi Welsh.
      Jednak to nie ostryżyce najbardziej efektywnie usuwały wirusy. Uplasowały się dopiero na 4. pozycji wśród zwierząt badanych przez Welsh. Z organizmów, które testowaliśmy, najlepiej sprawowały się gąbki, kraby i sercówki. Podczas naszych eksperymentów w ciągu trzech godzin gąbki usunęły z wody aż 94% wirusów. Nawet, gdy co 20 minut dostarczaliśmy do wody kolejny zestaw wirusów gąbki niezwykle efektywnie je usuwały, mówi uczona.
      Welsh dodaje, że uzyskanych przez nią wyników nie można przekładać wprost na środowisko naturalne. Tam sytuacja jest znacznie bardziej złożona. Obecnych jest bowiem wiele innych gatunków, które wpływają na siebie nawzajem. Na przykład, gdy ostryżyca filtruje wodę i w pobliżu znajdzie się krab, ostryżyca zamyka skorupę i przestaje filtrować. Ponadto na zwierzęta mają wpływ ruchy wody, temperatura, promieniowanie ultrafioletowe, wyjaśnia.
      Badania Welsh przydadzą się w akwakulturze. Ryby hoduje się tam w zamknięciu w wodach oceanicznych. W takich farmach słonej wody olbrzyma liczba zwierząt z jednego gatunku jest trzymana w monokulturze. Jeśli w takich hodowli wybuchnie epidemia, istnieje wysokie ryzyko, że patogen rozprzestrzeni się na żyjące w oceanie dzikie populacje. Jeśli do takiej hodowli dodamy wystarczającą liczbę gąbek, możemy zapobiec rozprzestrzenianiu się epidemii.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z amerykańskiego Laboratorium Wirusologii Narodowego Instytutu Alergii i Chorób Zakaźnych, Uniwersytetu Kalifornijskiego w Los Angeles, Uniwersytetu Princeton, Centrów Zapobiegania i Kontroli Chorób (CDC) oraz Narodowych Instytutów Zdrowia, określili czas przetrwania koronawirusa SARS-CoV-2 na różnych powierzchniach i w aerozolach. Z ich badań wynika, że jest on podobny, co czas przetrwania SARS-CoV-1, który wywołał epidemię SARS przed kilkunastu laty.
      Ogólnie rzecz biorąc, stabilność SARS-CoV-2 i SARS-CoV-1 jest bardzo podobna. Stwierdziliśmy, że aktywny wirus może być obecny w aerozolach do 3 godzin po aerozolizacji, do 4 godzin na miedzi, do 24 godzin na kartonie i do 2-3 dni na plastiku i stali nierdzewnej. Oba wirusy wykazywały podobny okres półtrwania w aerozolach, gdzie mediana wynosiła około 2,7 godziny. Oba wykazują dość długi czas przetrwania na stali nierdzewnej i polipropylenie w porównaniu z miedzią i kartonem. Mediana okresu półtrwania SARS-CoV-2 wynosi 13 godzin na stali i 16 godzin na polipropylenie. Wyniki naszych badań wskazują, że droga transmisji przez aerozole i powierzchnie jest możliwa, gdyż wirus pozostaje aktywny w aerozolach przez wiele godzin, a na powierzchniach przez wiele dni – czytamy w artykule Aerosol and surface stability of HCoV-19 (SARS-CoV-2) compared to SARS-CoV-1 [PDF]
      Naukowcy zauważają, że stabilność wirusa w aerozolach i na powierzchniach ma bezpośredni wpływ na ryzyko zarażenia. Obie te drogi zarażenia odegrały główną rolę podczas dwóch poprzednich epidemii koronawirusów, SARS i MERS, z tym, że w przypadku SARS prawdopodobnie główną drogą zarażenia były aerozole.
      Przeprowadzone właśnie szczegółowe analizy aktywności najnowszego koronawirusa wykazały, że w ciągu trzech godzin po aerozolizacji liczba zdolnych do zarażania wirusów spada z 103,5 do 102,7. Najnowszy koronawirus jest zaś najbardziej stabilny na polipropylenie, gdzie po 72 godzinach liczba aktywnych wirusów spadła z 103,7 do 100,6, oraz na stali nierdzewnej, gdzie do takiego samego spadku dochodzi w ciągu 48 godzin. Z kolei po nałożeniu wirusa na powierzchnię miedzianą obecności aktywnych wirusów nie wykrywano po 4 godzinach, a po nałożeniu na karton wirusów nie stwierdzono tam po 24 godzinach.
      Uczeni stwierdzili, że nie ma statystycznie istotnej różnicy pomiędzy okresem przetrwania SARS-CoV-2 i SARS-CoV-1 na różnych powierzchniach i w aerozolach. Skoro tak, to do wyjaśnienia pozostaje zagadka, dlaczego obecny koronawirus (SARS-CoV-2) wywołał epidemię na znacznie większą skalę. Wiele różnych czynników może wchodzić tutaj w grę. Prawdopodobnie najnowszym koronawirusem możemy zarazić się od osób niewykazujących objawów, co ogranicza skuteczność kwarantanny. Mogą istnieć też różnice w ilości wirusów potrzebnych do wywołania zakażenia. Inne możliwe czynniki to stabilność wirusa w śluzie i jego odporność na takie czynniki jak temperatura i wilgotność.
      Autorzy obecnych badań właśnie zaczynają eksperymenty, które pozwolą określić, jak SARS-CoV-2 radzi sobie w różnych warunkach atmosferycznych i różnych środowiskach, takich jak w wydzielinie z nosa, ślinie czy kale.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...