Zaloguj się, aby obserwować tę zawartość
Obserwujący
0
Siatkówka jak nowa
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Oko – narząd wzroku człowieka – pod wieloma względami zachwyca i zdumiewa nie tylko precyzją widzenia oraz możliwością rozróżniania milionów barw, ale również umiejętnością funkcjonowania w niezwykle szerokim przedziale intensywności światła, która w naturalnych warunkach potrafi zmieniać się nawet o czynnik równy dziesięciu miliardom!
Takie wyzwanie wymaga od fotoreceptorów dysponowania krańcowo odmiennymi, a nawet pozornie sprzecznymi atrybutami: z jednej strony bardzo wysoką czułością, z drugiej zaś strony fotostabilnością. Łączenie tego typu skrajności możliwe jest dzięki aktywności wielu mechanizmów regulacyjnych, funkcjonujących na różnych poziomach organizacji narządu wzroku. Wśród nich ważnym oraz doskonale znanym jest zwężanie oraz rozszerzanie źrenicy w odpowiedzi na zmiany intensywności światła, przypominające działanie przysłony fotograficznej.
Okazuje się, iż w oku człowieka funkcjonuje również inny ważny mechanizm regulacyjny, przypominający z kolei działanie okularów fotochromowych. Mechanizm ten dynamicznie osłabia intensywność światła docierającego do fotoreceptorów przy wysokich natężeniach, działając w przeciwnym kierunku przy niskim poziomie oświetlenia. W tę nieznaną dotychczas aktywność regulacyjną na poziomie molekularnym zaangażowane są bezpośrednio luteina oraz zeaksantyna, barwniki ksantofilowe obecne w siatkówce oka człowieka, w szczególności w jej centralnym obszarze zwanym plamką żółtą.
Odkrycie tego mechanizmu zostało właśnie ogłoszone przez międzynarodowy zespół badaczy pracujących pod kierunkiem prof. Wiesława Gruszeckiego z Uniwersytetu Marii Curie-Skłodowskiej w Lublinie. Zespół został utworzony w celu realizacji projektu badawczego w programie TEAM Fundacji na rzecz Nauki Polskiej, współfinansowanym w ramach Programu Operacyjnego Inteligentny Rozwój Unii Europejskiej.
Jak mówi prof. Gruszecki, lider projektu: Aktywność interdyscyplinarnego zespołu złożonego z fizyków, medyków oraz chemików, zarówno eksperymentalnych, jak i reprezentujących podejścia obliczeniowe, stworzyła unikalne możliwości badania mechanizmów molekularnych funkcjonujących w oku człowieka oraz poszukiwania odpowiedzi na pytania formułowane z perspektywy wielu, dopełniających się obszarów poznawczych. Co równie ważne, zaangażowanie w pracach zespołu uznanych ekspertów, jak prof. Robert Rejdak z Uniwersytetu Medycznego w Lublinie czy prof. Jacek Czub z Politechniki Gdańskiej, ramię w ramię z adeptami nauki – doktorantami oraz studentami – stanowiło „mieszankę wybuchową” doświadczenia i młodzieńczego entuzjazmu, czyniąc naszą współpracę nie tylko dynamiczną, twórczą i wydajną, ale również pełną radości oraz satysfakcji na poziomie relacji społecznych.
Badacze pokazali, że ksantofile obecne w plamce żółtej oka, w odpowiedzi na zmiany intensywności światła, ulegają odwracalnej fotoizomeryzacji z konfiguracji molekularnej trans do cis, skutkującej zmianą orientacji tych barwników w błonach lipidowych. Co istotne, tego typu zmiana położenia w stosunku do płaszczyzny siatkówki oraz kierunku padających promieni powoduje radykalne zmiany pochłaniania światła przez tę grupę barwników. Przejawia się to przepuszczaniem większej liczby fotonów w kierunku fotoreceptorów, gdy poziom natężenia jest niski, oraz pochłanianiem promieniowania w warunkach jego nadmiernej intensywności.
Aktywność ta chroni siatkówkę przed fotouszkodzeniami w warunkach silnego oświetlenia, ułatwiając jednocześnie widzenie barwne oraz precyzyjne przy stosunkowo słabym świetle. Jak podkreślają badacze w swoim artykule, dodatkową, istotną cechą odkrytego mechanizmu jest jego bardzo krótki czas aktywacji (poniżej jednej tysięcznej sekundy) w stosunku do typowych reakcji źrenicy (czasy dłuższe niż 0,5 sekundy). Oznacza to, że ochrona fotoreceptorów włącza się automatycznie, zanim jeszcze dotrze do naszej świadomości informacja o zagrożeniu.
Co równie istotne, źrenica zwęża się jedynie do średnicy ok. 2 mm, pozostawiając niechronioną centralną część siatkówki, która jest odpowiedzialna za widzenie barwne oraz precyzyjne. Ochrona tego właśnie obszaru realizowana jest przez barwniki ksantofilowe oraz przez mechanizm regulacyjny porównany przez badaczy do „żaluzji” otwieranych i zamykanych na poziomie molekularnym w odpowiedzi na zmiany intensywności światła. Fakt, iż zasadniczym elementem aktywnym tych „żaluzji” są cząsteczki luteiny oraz zeaksantyny, które nie są syntetyzowane w organizmie człowieka, wskazuje na konieczność uwzględnienia ich w diecie tak, aby oczy służyły nam zarówno przy słabym, jak i intensywnym oświetleniu przez długie lata naszego życia.
O skrajnie negatywnych skutkach niedoboru luteiny oraz zeaksantyny w diecie świadczy utrata widzenia spowodowana degeneracją plamki żółtej w siatkówce oka postępującą wraz z wiekiem (AMD, ang. Age-Related Macular Degeneration). Na szczęście w zadaniu komponowania diety oraz doboru właściwych produktów żywnościowych pomaga nam zmysł wzroku, na co wskazuje fakt, iż luteina i zeaksantyna, jako barwniki ksantofilowe, charakteryzują się ciepłą, żółtopomarańczową barwą – mówi prof. Gruszecki.
Praca przedstawiająca odkrycie mechanizmu „żaluzji molekularnych” w siatkówce oka człowieka ukazała się w czasopiśmie The Journal of Physical Chemistry.
Jak zauważają autorzy artykułu, warty podkreślenia jest fakt, iż podobny proces odwracalnej fotoizomeryzacji barwników polienowych wykorzystany został przez naturę na drodze ewolucji biologicznej jako centralny mechanizm leżący u podstaw funkcjonowania dwóch zasadniczo odmiennych aktywności na poziomie fizjologicznym w oku człowieka. Fotoizomeryzacja cis-trans retinalu w rodopsynie uruchamia kaskadę sygnałów w procesie widzenia, zaś fotoizomeryzacja luteiny i zeaksantyny w plamce żółtej odpowiada za kształtowanie dynamicznej regulacji intensywności światła docierającego do fotoreceptorów na drodze mechanizmu „żaluzji molekularnych”.
W poniższym załączniku dostępny jest artykuł wraz z grafiką przedstawiającą ideę eksponatu w muzeum nauki, obrazującego aktywność mechanizmu „żaluzji molekularnych” w oku człowieka.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Inżynierowie biomedyczni z Duke University opracowali metodę jednoczesnego pomiaru grubości i tekstury warstw siatkówki. Mają nadzieję, że będzie ją można wykorzystać do wykrywania biomarkerów choroby Alzheimera (ChA). Wyniki badań ukazały się w piśmie Scientific Reports.
Wcześniejsze badanie wykazało pocienienie siatkówki u pacjentów z ChA. Dodając do pomiarów kolejną metodę, odkryliśmy, że warstwa włókien nerwowych siatkówki [ang. retinal nerve fiber layer, RNFL] jest też bardziej nierówna i zaburzona - opowiada prof. Adam Wax. Mamy nadzieję, że uda się wykorzystać tę wiedzę do stworzenia [...] taniego urządzenia skryningowego, które byłoby dostępne nie tylko w gabinecie lekarza, ale i w miejscowej aptece.
Obecnie ChA diagnozuje się dopiero po wystąpieniu objawów - zaburzeń poznawczych. Gdyby dało się wdrożyć leczenie na wczesnych etapach choroby, znacznie poprawiłoby to jakość życia pacjentów. To dlatego naukowcy nie ustają w próbach wykrycia biomarkerów, które mogłyby pełnić rolę wczesnych sygnałów ostrzegawczych.
Siatkówka zapewnia łatwy dostęp do mózgu i jej pocienienie może być wskazówką zmniejszenia ilości tkanki nerwowej, a więc występowania ChA - wyjaśnia Wax.
Problemem jest jednak to, że inne choroby, np. parkinson czy jaskra, także powodują pocienienie siatkówki. Poza tym różnice między aparatami do optycznej tomografii koherencyjnej (OCT) prowadzą do niespójności uzyskiwanych rezultatów.
Najnowsze badania Waxa i jego studentki Ge Song wykazały, że warstwa włókien nerwowych siatkówki w mysim modelu ChA jest cieńsza i wykazuje zmiany strukturalne. Złogi amyloidu w siatkówkach transgenicznych gryzoni występowały np. głównie w rejonach w obrębie RNFL i warstwy splotowatej zewnętrznej (ang. outer plexiform layer, OPL).
Nasze nowe podejście może określić [...] teksturę NFL, zapewniając szybki i bezpośredni sposób pomiaru zmian strukturalnych powodowanych przez alzheimera [...].
By uzyskać więcej danych, naukowcy połączyli OCT z kątoworozdzielczą interferometrią niskokoherentną (ang. angle-resolved low-coherence interferometry, a/LCI). Wiedza nt. kątów rozpraszania światła daje bowiem wgląd w strukturę tkanki.
Podczas testów wykazano, że średnia grubość NFL w grupie myszy typu dzikiego wynosiła ok. 18µm, a w grupie z alzheimerem była obniżona do 16µm.
Pomiary a/LCI uzupełniają pomiary grubości [...]. Za pomocą samego OCT nie uzyska się danych dot. struktury siatkówki. Potrzebne są więc obie modalności obrazowania - wyjaśnia Song.
Obecnie naukowcy pracują nad dodaniem nowej opcji do taniego systemu OCT. Co ważne, zmniejszone waga i gabaryty sprzętu Waxa przekładają się na mniejsze rozmiary i niższą cenę.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Studenci medycyny od dekad uczą się, że oczy komunikują się z mózgiem za pomocą jednego typu sygnałów, pobudzających. Jednak naukowcy z Northwestern University odkryli właśnie, że część neuronów siatkówki wysyła też sygnały hamujące. Naukowcy zauważyli również, że ten sam zestaw neuronów jest zaangażowany w takie działania jak synchronizacja rytmu dobowego z cyklem dnia oraz ze zwężaniem źrenicy w reakcji na jasne światło. Postanowili się więc przyjrzeć temu bliżej.
Okazało się, że wysyłane z oka sygnały hamujące zapobiegają zresetowaniu się rytmu dobowego w reakcji na przytłumione światło i zapobiegają zwężaniu się źrenic, gdy jest mało światła. Oba te zjawiska zapewniają nam odpowiednie widzenie i funkcjonowanie za dnia. Sądzimy, że badania te mogą pomóc nam w zrozumieniu, dlaczego nasze oczy są tak wrażliwe na światło, ale podświadome reakcje naszego organizmu są stosunkowo niewrażliwe, mówi główna autorka badań, Tiffany Schmidt.
W ramach badań Schmidt i jej zespół zablokowali u myszy neurony wysyłające sygnały hamujące. Wówczas za pomocą przytłumionego światła łatwiej było zmienić rytm dobowy myszy. To wskazuje, że sygnały z oczu w sposób aktywny powstrzymują nasz organizm przed zmianą rytmu dobowego w reakcji na przytłumione światło. To niespodziewane zjawisko. Ma to jednak sens, gdyż nie chcielibyśmy, by nasze organizmy zmieniały rytm dobowy w reakcji na zwykłe zmiany oświetlenia. Zmiana rytmu dobowego jest pożądana tylko wtedy, gdy rzeczywiście dochodzi do dużych zmian ilości dostępnego światła, stwierdziła Schmidt.
Naukowcy zauważyli też, że po zablokowaniu sygnałów hamujących z oczu, źrenice myszy były znacznie bardziej wrażliwe na światło. Sądzimy, że mechanizm ten zapobiega kurczeniu się źrenic w słabym oświetleniu. Do rozszerzonej źrenicy wpada więcej światła, więc lepiej widzimy w takich warunkach. To częściowo wyjaśnia, dlaczego nasze źrenice zwężają się dopiero gdy jasne światło stanie się jeszcze jaśniejsze.
Ze szczegółami badań można zapoznać się na łamach Science.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Zespół z Uniwersytetu w Cambridge odkrył w mózgu nowy rodzaj komórek macierzystych o dużym potencjale regeneracyjnym.
Zdolności samonaprawy mózgu nie są zbyt dobre, ale jak podkreślają naukowcy, można by to zmienić bez operacji, obierając na cel rezydujące w nim komórki macierzyste. Komórki macierzyste pozostają jednak zwykle w stanie spoczynku (ang. quiescence), co oznacza, że nie namnażają się ani nie przekształcają w różne rodzaje komórek. By więc myśleć o naprawie/regeneracji, najpierw trzeba je "obudzić".
Podczas ostatnich badań doktorant Leo Otsuki i prof. Andrea Brand odkryli nowy rodzaj pozostających w uśpieniu komórek macierzystych - G2 (ang. G2 quiescent stem cell). G2 mają większy potencjał regeneracyjny niż wcześniej zidentyfikowane uśpione komórki macierzyste. Oprócz tego o wiele szybciej się aktywują, by produkować neurony i glej (nazwa G2 pochodzi od fazy cyklu komórkowego, na jakiej się zatrzymały).
Badając mózg muszek owocówek, autorzy publikacji z pisma Science zidentyfikowali gen trbl, który wybiórczo reguluje G2. Ma on swoje odpowiedniki w ssaczym genomie (ich ekspresja zachodzi w komórkach macierzystych mózgu).
Odkryliśmy gen, który nakazuje, by komórki te weszły w stan uśpienia. Kolejnym krokiem będzie zidentyfikowanie potencjalnych leków, które zablokują trbl i obudzą komórki macierzyste - tłumaczy Otsuki. Sądzimy, że podobne uśpione komórki występują w innych narządach i że nasze odkrycie pomoże ulepszyć lub wynaleźć nowe terapie regeneracyjne.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Nikogo nie dziwi widok konia w czapraku, jednak wdzianko, które zakrywa ciało od karku po ogon aż do kopyt, to już zupełnie inna sprawa. Ostatnio australijscy miłośnicy wyścigów konnych mogli podziwiać odzianego w taki właśnie kombinezon championa sprinterów Hay Lista.
Kombinezon zakłada się zaraz po biegu, by przyspieszyć regenerację. Ponieważ ogier odniósł w ciągu kariery szereg urazów, trener John McNair pomyślał, że warto spróbować, a było nad czym myśleć, bo koszt zakupu uniformu to aż 900 dolarów australijskich.
To zasadniczo kombinezon uciskowy. Widzi się korzystających z takiego rozwiązania kolarzy, piłkarzy i innych sportowców. Ma pomagać przy zmęczeniu mięśni i ogólnej regeneracji. Przez kilka ostatnich tygodni wypróbowaliśmy piankę na koniu i różnica jest naprawdę ogromna - podkreśla McNair.
Hidez Recovery Suit bazuje na metodzie stopniowego ucisku, która wspomaga krążenie i sprawia, że do różnych grup mięśni dociera więcej tlenu. Pianka opóźnia też ponoć początek bólu mięśni.
Wydawać by się mogło, że ubranie konia w coś takiego zajmuje dużo czasu, jednak jak ujawnia trener, dzięki zamkom po 1,5 min jest już po wszystkim.
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.