Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Ścisnęli mocno światło

Rekomendowane odpowiedzi

Naukowcom z Uniwersytetu Kalifornijskiego w Berkeley udało się przepuścić światło przez niezwykle małą szczelinę. To, co może wyglądać na czysto akademickie badania, będzie miało olbrzymie znaczenie przy miniaturyzacji urządzeń optycznych wykorzystywanych w telekomunikacji czy komputerach optycznych.

Dotychczas rekordowo mała szczelina, przez którą przechodziło światło, miała 200 nanometrów średnicy. Teraz zespół profesora Xiang Zhanga udowodnił, że światło może przejść przez otwór o średnicy zaledwie 10 nanometrów. To aż 100 mniej, niż wynosi średnica obecnie używanych kabli optycznych.

Ta technologia daje nam olbrzymią kontrolę nad światłem i pozwoli na stworzenie w przyszłości zadziwiających urządzeń - mówi Rupert Oulton, jeden z autorów badań.

W miarę postępującej miniaturyzacji układów scalonych inżynierowie pracujący nad zastosowaniem w nich przewodów optycznych w miejsce miedzianych, szukają sposobów na miniaturyzację tych przewodów. Tak więc badania z Berkeley pozwolą na postępy w budowie maszyn optycznych. Miniaturyzacja ma jednak swoją granicę, na którą natknęli się także naukowcy z Uniwersytetu Kalifornijskiego. Otóż jeśli skompresujemy światło poniżej długości jego fali, światło nie pozostanie w tak małej przestrzeni zbyt długo.

Akademicy wykorzystali zjawisko plazmoniki, gdy światło przy powierzchni metalu wiąże się z elektronami. Jednak taka fala świetlna może przebyć bardzo krótki odcinek, a później wygasa.

Oulton zastanawiał się jednak nad połączeniem plazmoniki i półprzewodników. Wpadł na pomysł zbudowania światłowodu z bardzo cienkiej warstwy półprzewodnika połączonego z gładką srebrną powierzchnią, co powinno zwiększyć drogę przebywaną przez światło. To bardzo proste rozwiązanie i dziwię się, że nikt wcześniej na to nie wpadł - mówi uczony.

Naukowcy przeprowadzili symulacje i okazało się, że światło w takim przewodzie nie tylko mogłoby przejść przez otwór o średnicy 10 nanometrów, ale jego droga wydłużyłaby się 100-krotnie w porównaniu z przeprowadzonym wcześniej doświadczeniem. Oulton wyjaśnia, że taka technika zadziała, ponieważ w tym przypadku półprzewodnikowo-srebrny system działa jak kondensator, przechowując energię pomiędzy okablowaniem a warstwą metalu. Gdy światło przepływa przez otwór, pojawiają się ładunki elektryczne na okablowaniu i metalu, które wydłużają drogą światła. To z kolei obala dotychczasową "prawdę" naukową mówiącą, że im bardziej skompresowane światło, tym krótszą drogę jest ono w stanie przebyć. Okazuje się zatem, że można kompresować światło i jednocześnie wydłużyć przebytą przez nie drogę.

Na razie jednak, jak przyznaje Oulton, są to czysto teoretyczne rozważania. Jednak skonstruowanie półprzewodnikowo-srebrnej hybrydy nie powinno nastręczać większych kłopotów. Problem leży w czym innym. Otóż obecnie nie dysponujemy urządzeniami wykrywającymi światło na tak małej przestrzeni jaką jest 10 nanometrów. Zespół Zhanga pracuje jednak nad stworzeniem odpowiednich technik. Kolejne badania będą prowadzone, gdyż dają one nadzieję na dokonanie olbrzymiego postępu.

Optyka sięga skali elektronów. A to oznacza, że potencjalnie możemy zrobić coś, co nigdy wcześniej nie było zrobione - mówi Oulton.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Tylko ile razy droższe będzie wykonanie takiego hybrydowego medium w porównaniu ze zwykłym światłowodem?

I ciekaw jestem jaką prędkość uzyska sygnał tak przekazywany?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Do komunikacji trzeba wykorzystać neutrina, wtedy kable są zbędne a  informację można przesyłać na wylot przez glob. 8)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
I przez odbiornik też..

 

Wystarczy że detektor szafirowy wyłapie kilka więcej w impulsie 1 niz przy 0.

 

Ciekawostka: Z trylionów neutrin przelatujących przez ciało człowieka wyłapujemy 2 na pół godziny.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
I przez odbiornik też..

 

Wystarczy że detektor szafirowy wyłapie kilka więcej w impulsie 1 niz przy 0.

 

Ciekawostka: Z trylionów neutrin przelatujących przez ciało człowieka wyłapujemy 2 na pół godziny.

 

waldi zamilcz! prosze

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Z trylionów neutrin przelatujących przez ciało człowieka wyłapujemy 2 na pół godziny.

 

zdanie conajmniej bez sensu. ten trylion przelatuje w jakiejsc zdefiniowanej jednosce czasu ?

 

I przez odbiornik też..

 

Wystarczy że detektor szafirowy wyłapie kilka więcej w impulsie 1 niz przy 0.

 

wiesz jest wiele metod badania, odzialywan neutrin z materia ale pozatym  co Ci po transporcie informacji skoro mozesz odczytac tylko ich ulamek ?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Były eksperymenty z przesyłaniem neutrin (a wiec i z ich detekcją ) na dystanśie 700 km więc się da i to od lat 70.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Były eksperymenty z przesyłaniem neutrin (a wiec i z ich detekcją ) na dystanśie 700 km więc się da i to od lat 70.

 

 

co za brednie, neutrina 70 lat temu byly hipotecznymi czastkami a odkryte dopiero 50 lat temu. Pozatym neutrina powstaja w czasie reakcji jadrowych wiec "przesylanie" to raczej dosc mocne slowo. Ledwo umiemy je wykryc a co tu mowic o przesylaniu.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Unikalnym przedsięwzięciem jest skierowanie wiązki neutrin z CERN-u do laboratorium Gran Sasso we Włoszech, oddalonego o 730 km od CERN-u (projekt CNGS). Neutrina będą przechodzić pod powierzchnią Ziemi (głęboko pod Alpami). Eksperymenty w Gran Sasso rozpoczną się w roku 2006.

 

 

http://209.85.135.104/search?q=cache:_LUSveMhTikJ:www.zwoje-scrolls.com/zwoje41/text13p.htm+przesy%C5%82anie+neutrin&hl=pl&ct=clnk&cd=9&gl=pl

 

 

Powiem tylko że byle bryłka izotopu tryska neutriami. 8)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Unikalnym przedsięwzięciem jest skierowanie wiązki neutrin z CERN-u do laboratorium Gran Sasso we Włoszech, oddalonego o 730 km od CERN-u (projekt CNGS). Neutrina będą przechodzić pod powierzchnią Ziemi (głęboko pod Alpami). Eksperymenty w Gran Sasso rozpoczną się w roku 2006.

 

 

http://209.85.135.104/search?q=cache:_LUSveMhTikJ:www.zwoje-scrolls.com/zwoje41/text13p.htm+przesy%C5%82anie+neutrin&hl=pl&ct=clnk&cd=9&gl=pl

 

 

Powiem tylko że byle bryłka izotopu tryska neutriami. 8)

 

ciekawe ciwekawe no nie powiem ale zastanawia mnie jak odroznili te ich neutrina od neutrin slonecznych.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Po raz pierwszy udało się zrekonstruować w laboratorium falową naturę elektronu, jego funkcję falową Blocha. Dokonali tego naukowcy z Uniwersytetu Kalifornijskiego w Santa Barbara (UCSB), a ich praca może znaleźć zastosowanie w projektowaniu kolejnych generacji urządzeń elektronicznych i optoelektronicznych.
      Elektrony zachowują się jednocześnie jak cząstki oraz jak fala. Ich falowa natura opisywane jest przez naukowców za pomocą obiektów matematycznych zwanych funkcjami falowymi. Funkcje te zawierają zarówno składowe rzeczywiste, jak i urojone. Z tego też powodu funkcji falowej Blocha elektronu nie można bezpośrednio zmierzyć. Można jednak obserwować powiązane z nią właściwości. Fizycy od dawna próbują zrozumieć, w jaki sposób falowa natura elektronów poruszających się przez sieć krystaliczną atomów, nadaje tej sieci właściwości elektroniczne i optyczne. Zrozumienie tego zjawiska pozwoli nam projektowanie urządzeń lepiej wykorzystujących falową naturę elektronu.
      Naukowcy z Santa Barbara wykorzystali silny laser na swobodnych elektronach, który posłuży im do uzyskanie oscylującego pola elektrycznego w półprzewodniku, arsenu galu. Jednocześnie za pomocą lasera podczerwonego o niskiej częstotliwości wzbudzali jego elektrony. Wzbudzone elektrony pozostawiały po sobie „dziury” o ładunku dodatnim. Jak wyjaśnia Mark Sherwin, w arsenku galu dziury te występują w dwóch odmianach – lekkiej i ciężkiej – i zachowują się jak cząstki o różnych masach.
      Para elektron-dziura tworzy kwazicząstkę zwaną ekscytonem. Fizycy z UCSB odkryli, że jeśli utworzy się elektrony i dziury w odpowiednim momencie oscylacji pola elektrycznego, to oba elementy składowe ekscytonów najpierw oddalają się od siebie, następnie zwalniają, zatrzymują się, zaczynają przyspieszać w swoim kierunku, dochodzi do ich zderzenia i rekombinacji. W czasie rekombinacji emitują impuls światła – zwany wstęgą boczną – o charakterystycznej energii. Emisja ta zawiera informacje o funkcji falowej elektronów, w tym o ich fazach.
      Jako, że światło i ciężkie dziury przyspieszają w różnym tempie w polu elektrycznym ich funkcje falowe Blocha mają różne fazy przed rekombinacją z elektronami. Dzięki tej różnicy fazy dochodzi do interferencji ich funkcji falowych i emisji, którą można mierzyć. Interferencja ta determinuje też polaryzację wstęgi bocznej. Może ona być kołowa lub eliptyczna.
      Autorzy eksperymentu zapewniają, że sam prosty stosunek pomiędzy interferencją a polaryzacją, który można zmierzyć, jest wystarczającym warunkiem łączącym teorię mechaniki kwantowej ze zjawiskami zachodzącymi w rzeczywistości. Ten jeden parametr w pełni opisuje funkcję falową Blocha dziury uzyskanej w arsenku galu. Uzyskujemy tę wartość mierząc polaryzację wstęgi bocznej, a następnie rekonstruując funkcję falową, która może się różnić w zależności od kąta propagacji dziury w krysztale, dodaje Seamus O'Hara.
      Do czego takie badania mogą się przydać? Dotychczas naukowcy musieli polegać na teoriach zawierających wiele słabo poznanych elementów. Skoro teraz możemy dokładnie zrekonstruować funkcję falową Blocha dla różnych materiałów, możemy to wykorzystać przy projektowaniu i budowie laserów, czujników i niektórych elementów komputerów kwantowych, wyjaśniają naukowcy.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Fizyk James Franson z University of Maryland opublikował w recenzowanym Journal of Physics artykuł, w którym twierdzi, że prędkość światła w próżni jest mniejsza niż sądzimy. Obecnie przyjmuje się, że w światło w próżni podróżuje ze stałą prędkością wynoszącą 299.792.458 metrów na sekundę. To niezwykle ważna wartość w nauce, gdyż odnosimy do niej wiele pomiarów dokonywanych w przestrzeni kosmicznej.
      Tymczasem Franson, opierając się na obserwacjach dotyczących supernowej SN 1987A uważa, że światło może podróżować wolniej.
      Jak wiadomo, z eksplozji SN 1987A dotarły do nas neutrina i fotony. Neutrina przybyły o kilka godzin wcześniej. Dotychczas wyjaśniano to faktem, że do emisji neutrin mogło dojść wcześniej, ponadto mają one ułatwione zadanie, gdyż cała przestrzeń jest praktycznie dla nich przezroczysta. Jednak Franson zastanawia się, czy światło nie przybyło później po prostu dlatego, że porusza się coraz wolniej. Do spowolnienia może, jego zdaniem, dochodzić wskutek zjawiska polaryzacji próżni. Wówczas to foton, na bardzo krótki czas, rozdziela się na pozyton i elektron, które ponownie łączą się w foton. Zmiana fotonu w parę cząstek i ich ponowna rekombinacja mogą, jak sądzi uczony, wywoływać zmiany w oddziaływaniu grawitacyjnym pomiędzy parami cząstek i przyczyniać się do spowolnienia ich ruchu. To spowolnienie jest niemal niezauważalne, jednak gdy w grę wchodzą olbrzymie odległości, liczone w setkach tysięcy lat świetlnych – a tak było w przypadku SN 1987A – do polaryzacji próżni może dojść wiele razy. Na tyle dużo, by opóźnić fotony o wspomniane kilka godzin.
      Jeśli Franson ma rację, to różnica taka będzie tym większa, im dalej od Ziemi położony jest badany obiekt. Na przykład w przypadku galaktyki Messier 81 znajdującej się od nas w odległości 12 milionów lat świetlnych światło może przybyć o 2 tygodnie później niż wynika z obecnych obliczeń.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Obecnie wykrywanie związków chemicznych jest łatwiejsze niż kiedykolwiek wcześniej, lecz prowadzenie analiz w pojedynczej kropli nadal pozostaje wyzwaniem. Naukowcy próbują miniaturyzować urządzenia do wykrywania substancji chemicznych w o wiele mniejszej objętości niż robione jest to w laboratoriach diagnostycznych. Gdyby ktoś powiedział kilka dekad temu, że jedna kropla roztworu wystarczy, aby odkryć, jakie substancje kryją się w jej wnętrzu, z pewnością nikt by w to nie uwierzył. Na szczęście to już nie fikcja, a codzienność.
      Wychodząc naprzeciw rosnącemu zapotrzebowaniu na prowadzenie w czasie rzeczywistym analiz w zaledwie kilku mikrolitrach roztworu, naukowcy z Instytutu Chemii Fizycznej PAN pod kierunkiem Martina Jӧnssona-Niedziółki we współpracy z badaczami z Politechniki Warszawskiej udowodnili, że detekcja w tak małej skali jest możliwa.
      Nowa koncepcja badaczy łączy kilka rozwiązań opierających się na zminiaturyzowanych elektrodach, unikalnej geometrii płytki do gromadzenia roztworu oraz światłowodu. Naukowcy zaprezentowali połączenie różnych technik badawczych, tworząc narzędzie o wiele czulsze niż klasyczne metody. Taka kombinacja elektrochemii z technikami optycznymi oraz mikroskopijnym zbiornikiem na kroplę opłacała się, pozwalając na o wiele więcej niż pierwotnie zakładano. To niesamowite, że dzięki „zaledwie” i jednocześnie „aż” sygnałom elektrochemicznym i optycznym wyjątkowo czuła analiza chemiczna mikroskopijnych kropel jest możliwa.
      Przeprowadziliśmy serię eksperymentów elektrochemicznych równolegle z pomiarami optycznymi dla różnych pozycji mikroelektrod. Dzięki temu mogliśmy wyraźnie zobaczyć zmianę sygnału optycznego w miarę postępu reakcji elektrochemicznej – wspomina dr Martin Jӧnsson-Niedziółka
      Naukowcy wykazali, że kontrolując wielkość wgłębień na płytce typu „lab-on-a-chip” oraz indukując sygnał w światłowodzie za pomocą ablacji laserem femtosekundowym, mogą elektrochemicznie badać roztwór w setnych częściach mililitra roztworu. Co ciekawe, tajemnica dużej czułości układu kryje się w zastosowanym światłowodzie, który choć jest ma długą historię i jest powszechnie używany w telekomunikacji, umożliwia detekcję nawet minimalnych zmian w procesach chemicznych. A to za sprawą pomiaru parametru zwanego współczynnikiem załamania światła. W ten sposób zaprojektowany system może precyzyjnie mierzyć ugięcie światła w każdej z badanych kropel. Gdy w próbce zachodzi reakcja chemiczna np. proces redukcji-utlenienia, wartości tego parametru zmieniają się, umożliwiając wykrycie nawet niewielkich różnic w składzie chemicznym w cieczy.
      Dr Martin Jӧnsson-Niedziółka twierdzi, że połączenie niezwykłej czułości światłowodów z ich elastycznością i narzędziami elektrochemicznymi daje nowe możliwości w detekcji związków chemicznych, szczególnie w analizie złożonych układów np. próbek biologicznych.
      Naukowcy porównali uzyskane wyniki z klasycznymi technikami tj. spektroskopia w bliskiej podczerwieni, celem porównania czułości detekcji na przykładzie reakcji redoks przy użyciu związku na bazie ferrocenu. Co ciekawe, stosując tę metodę, nie zarejestrowali różnicy między sygnałami postaci utlenionej i zredukowanej stosowanego wskaźnika redoks, pokazując, że klasyczne rozwiązania w tak małej skali zawodzą. Tym samym badacze potwierdzili, że mierzenie zmian podczas przebiegu reakcji elektrochemicznych wraz z monitorowaniem właściwości optycznych roztworu umożliwia detekcję związków nawet w objętościach rzędu zaledwie kilku mikrolitrów. Dodatkowo przeprowadzone analizy numeryczne potwierdziły, że detekcja ta jest możliwa nawet w jeszcze mniejszej objętości rzędu pikolitrów. Jest to niezwykle ważne w projektowaniu nowoczesnych urządzeń do przenośnego, wydajnego i czułego wykrywania substancji z roztworu.
      Wciąż jest jeszcze wiele do zrobienia, lecz niezmiernie cieszy nas fakt, że zaproponowany przez nas układ w ogóle działa. Już teraz ulepszamy aparaturę, aby system był łatwiejszy w obsłudze i bardziej uniwersalny w użyciu – mówi Jӧnsson-Niedziółka.
      Przedstawione dane są obiecujące i mają ogromny potencjał pod kątem prowadzenia w przyszłości badań przesiewowych próbek biologicznych, takich jak metabolity, lub zastosowania w innych dziedzinach, np. do analizy próbek środowiskowych, a nawet materiałów niebezpiecznych. Być może zaproponowane przez naukowców rozwiązanie już niebawem pozwoli na przenośne wykrywanie wielu reakcji chemicznych o wiele szybciej i sprawniej niż przy użyciu klasycznej aparatury laboratoryjnej. Złożoność układu i czułość pomiarów wciąż wymagają prac celem optymalizacji licznych parametrów, lecz już teraz można stwierdzić, że jest to przełom w detekcji w mikroskali i z pewnością przyczyni się do polepszenia skuteczności przyszłego leczenia klinicznego.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Fototerapia była znana już w starożytnym Egipcie. W pracach Hipokratesa można doszukać się wzmianek na temat leczniczych właściwości światła słonecznego. Dziś leczenie światłem można skutecznie praktykować w gabinetach odnowy biologicznej, salonach masażu czy w zaciszu własnego domu. Jakie są właściwości lampy Bioptron?
      Światło źródłem zdrowia
      Praktyki z udziałem światła słonecznego stosowane w starożytnym Egipcie nie mają co prawda potwierdzenia w formie medycznych dowodów naukowych. Jednak wówczas korzystne działanie promieni słonecznych uznawano za niepodważalny fakt. Dzięki osiągnięciom współczesnej medycyny wiadomo już, że organizm jest w stanie zamienić światło w energię elektrochemiczną. Pozyskana energia aktywuje pasmo reakcji biochemicznych w komórkach, a skutkiem tych zmian jest efekt terapeutyczny.
      Lata badań i spektakularne rezultaty
      Warto nadmienić, że badania nad pozytywnym wpływem promieni słonecznych na organizm od dziesięcioleci prowadzone są na całym świecie. Naukowcy zafascynowani możliwościami światła spolaryzowanego od lat pochylają się nad kluczowymi dla ludzkiego zdrowia projektami.
      Potrzebowano ponad 20 lat szczegółowych badań i doświadczeń, by stworzyć lampę Bioptron. Polichromatyczne światło spolaryzowane stało się głównym obiektem naukowców, którzy po latach badań opracowali rewolucyjny przyrząd, zdolny do leczenia licznych schorzeń. Światło pochodzące z lampy poprawia mikrokrążenie w tkankach, aktywując je do procesów odpornościowych. Urządzenie okazało się przełomowe, co potwierdzają specjaliści licznych gabinetów, w których jest stosowane.
      Zastosowanie lampy Bioptron
      Za główne przeznaczenie lampy uważa się leczenie zmian skórnych i wspomaganie procesu gojenia się ran. Urządzenie bardzo dobrze sprawdzi się także w leczeniu chorób reumatologicznych oraz przy dolegliwościach bólowych kręgosłupa. Lata badań wykazały ponadto, że stosowanie fototerapii przynosi doskonałe rezultaty przeciwdziałając starzeniu się skóry. Lampa szybko znalazła zatem zastosowanie w gabinetach kosmetycznych i klinikach medycyny estetycznej.
      Podkreślając dobroczynne działanie lampy na zmiany skórne, warto skupić się wokół takich schorzeń, jak opryszczka, łuszczyca, atopowe zapalenie skóry czy trądzik młodzieńczy. Regularne stosowanie lampy Bioptron skutecznie regeneruje tkanki podskórne, pomagając wyleczyć odleżyny oraz owrzodzenia.
      Za imponującymi efektami opowiadają się także lekarze specjaliści. Lampa doskonale wspomaga leczenie tkanek miękkich i stanów zapalnych, więc chętnie korzystają z niej ortopedzi oraz reumatolodzy. Polecana jest także przez grono laryngologów jako urządzenie wpierające leczenie zatok czołowych oraz zapalenia zatok obocznych nosa.
      Światło lampy Bioptron zostało opracowane przez szereg specjalistów. Jej działanie jest na tyle bezpieczne, że urządzenie można stosować samodzielnie w domu, jak również z powodzeniem wykorzystywać przy leczeniu problemów skórnych u najmłodszych.
      Partnerem materiału jest MisjaZdrowia.pl – Twoja lampa Zepter Bioptron.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Modulowane kwantowe metapowierzchnie mogą posłużyć do kontrolowania wszystkich właściwości fotonicznego kubitu, uważają naukowcy z Los Alamos National Laboratory (LANL). To przełomowe spostrzeżenie może wpłynąć na rozwój kwantowej komunikacji, informatyki, systemów obrazowania czy pozyskiwania energii. Ze szczegółami badań można zapoznać się na łamach Physical Review Letters.
      Badania nad klasycznymi metapowierzchniami prowadzone są od dawna. My jednak wpadliśmy na pomysł modulowania w czasie i przestrzeni właściwości optycznych kwantowych metapowierzchni. To zaś pozwala na swobodne dowolne manipulowanie pojedynczym fotonem, najmniejszą cząstką światła, mówi Diego Dalvit z grupy Condensed Matter and Complex System w Wydziale Teorii LANL.
      Metapowierzchnie to ultracienkie powierzchnie, pozwalające na manipulowanie światłem w sposób, jaki zwykle nie występuje powierzchnie. Zespół z Los Alamos stworzył metapowierzchnię wyglądającą jak zbiór poobracanych w różne strony krzyży. Krzyżami można manipulować za pomocą laserów lub impulsów elektrycznych. Pojedynczy foton, przepuszczany przez taką metapowierzchnię, wchodzi w stan superpozycji wielu kolorów, stanów, dróg poruszania się, tworząc kwantowy stan splątany. W tym przypadku oznacza to, że foton jest w stanie jednocześnie przybrać wszystkie właściwości.
      Modulując taką metapowierzchnię za pomocą lasera lub impulsu elektrycznego, możemy kontrolować częstotliwość pojedynczego fotonu, zmienać kąt jego odbicia, kierunek jego pola elektrycznego czy jego spin, dodaje Abul Azad z Center for Integrated Nanotechnologies.
      Poprzez manipulowanie tymi właściwościami zyskujemy możliwość zapisywania informacji w fotonach.
      Naukowcy pracują też nad wykorzystaniem modulowanej kwantowej metapowierzchni do pozyskania fotonów z próżni. Kwantowa próżnia nie jest pusta. Pełno w niej wirtualnych fotonów. Za pomocą modulowanej kwantowej metapowierzchni można w sposób efektywny pozyskiwać te fotony i zamieniać je w realne pary fotonów, wyjaśnia Wilton Kort-Kamp.
      Pozyskanie fotonów z próżni i wystrzelenie ich w jednym kierunku, pozwoli uzyskać ciąg w kierunku przeciwnym. Niewykluczone zatem, że w przyszłości uda się wykorzystać ustrukturyzowane światło do generowania mechanicznego ciągu, a wszystko to dzięki metapowierzchniom i niewielkiej ilości energii.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...