Z bieguna zniknie lód
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Na podwodnych szczytach w centrum Oceanu Arktycznego, w jednym z najuboższych w składniki odżywcze regionów oceanów, odkryto wielkie kolonie gąbek. Wydaje się, że żywią się one... szczątkami wymarłej fauny. Współpracują przy tym z mikroorganizmami, dzięki którym mają dostęp do składników odżywczych. Niezwykłego odkrycia dokonali naukowcy z niemieckiego Instytutu Mikrobiologii Morskiej im. Maxa Plancka, Instytutu Alfreda Wegenera i międzynarodowy zespół naukowy współpracujący z nimi w ramach ekspedycji Polarstern. Poinformowali o nim na łamach Nature.
W regionie, gdzie dokonano niezwykłego odkrycia, znajduje się bardzo mało składników odżywczych. Ocean jest tutaj bez przerwy pokryty lodem, więc z powodu słabego dostępu do światła produktywność glonów jest niewielka, niewiele więc opada na dno. Mimo to na szczytach wygasłych wulkanów zauważono niespodziewanie bogaty ekosystem. Jest on zdominowany przez gąbki, które dorastają tutaj do imponujących rozmiarów. Ich średnica dochodzi nawet do 70 centymetrów.
Na szczytach wulkanicznych tworzących Grzbiet Langseth znaleźliśmy wielkie kolonie gąbek, jednak nie mieliśmy pojęcia, czym się one żywią, mówi Antje Boetius, główny naukowiec ekspedycji Polarstern. Naukowcy pobrali próbki i poddali je analizie. Wykazała ona, że gąbki żyją w symbiozie z mikroorganizmami, dzięki czemu mogą wykorzystywać starą materię organiczną. Dzięki temu żywią się pozostałościami wymarłych mieszkańców tych szczytów górskich, jak np. szczątkami robaków, wyjaśnia główna autorka badań Teresa Morganti.
Gąbki to jedne z najprostszych zwierząt. Odniosły wielki sukces ewolucyjny, spotykamy je zarówno na płytko położonych tropikalnych rafach koralowych, jak i w podbiegunowych głębinach. Wiele z nich żyje w symbiozie z mikroorganizmami, które zapewniają im zdrowie i dostęp do pożywienia. Mikroorganizmy te wytwarzają antybiotyki, rozkładają składniki odżywcze do form przyswajalnych przez gąbki czy rozkładają wydzieliny gąbek. Podobną symbiozę zaobserwowano w przypadku do rodzaju Geodia, który dominuje we właśnie odkrytych koloniach arktycznych.
Teresa Morganti we współpracy z Anną De Kluijver z Uniwersytetu w Utrechcie, przyjrzały się szczegółowo pobranym próbkom i stwierdziły, że przed tysiącami lat w badanym miejscu istniał bogaty ekosystem, dom dla wielu zwierząt. Teraz gąbki rozwijają się na szczątkach tego ekosystemu.
Mikroorganizmy mają tam idealne warunki do życia, z czego korzystają gąbki. Jednak nie jest to współpraca jednostronna. Gąbki działają tam jak inżynierowie ekosystemu. Wytwarzają one bowiem spikule (skleryty), twarde igłokształtne struktury, budujące ich szkielet i tworzące rodzaj mat, po których gąbki się przemieszczają. Maty takie ułatwiają gromadzenie się materiału biologicznego.
Grzbiet Langseth to pasmo górskie znajdujące się niedaleko Bieguna Północnego. Wody powyżej są bez przerwy pokryte lodem. A mimo to biomasa występujących tam gąbek jest porównywalna z biomasą gąbek w płytszych wodach o znacznie lepszym dopływie składników odżywczych. To unikatowy ekosystem. Nigdy wcześniej nie widzieliśmy czegoś takiego na szczytach górskich w środkowej części Oceanu Arktycznego. Na badanym obszarze pierwotna produkcja wód znajdujących się powyżej zapewnia mniej niż 1% zapotrzebowania gąbek na węgiel. Dlatego też ten ogród gąbek może być zjawiskiem przejściowym. Jednak to bogaty ekosystem, w skład którego wchodzą też koralowce, mówi Antje Boetium.
Arktyka należy do obszarów najbardziej dotkniętych skutkami globalnego ocieplenia. A ostatnie odkrycie pokazuje, jak mało wiemy o tym obszarze i jego unikatowym ekosystemie, który może ulec zniszczeniu, zanim go poznamy.
Przypomnijmy, że niedawno podobnie zdumiewającego odkrycia dokonano po przeciwnej stronie kuli ziemskiej, gdy pod lodami Antarktyki odkryto największy na świecie obszar rozrodu ryb.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Lód kojarzy się z twardym, kruchym materiałem. I rzeczywiście taki jest w większości przypadków. Jednak okazuje się, że pojedyncze długie kryształy lodu są niezwykle elastyczne i po zgięciu powracają do oryginalnego kształtu. Takie kryształy uzyskał właśnie Limin Tong i jego koledzy z Uniwersytetu Zheijiang w Hangzhou w Chinach.
Chińscy naukowcy uzyskali lodowe włókna wykorzystując parę wodną zamkniętą w niewielkiej komorze w temperaturze -50 stopni Celsjusza. Wykorzystali przy tym pole elektryczne, za pomocą którego przyciągali molekuły wody do wolframowej igły, gdzie krystalizowały, tworząc lodowe włókno o średnicy kilku mikrometrów.
Następnie lód został schłodzony jeszcze bardziej. Temperaturę obniżano pomiędzy -70 a -150 stopni Celsjusza i zmierzono elastyczność włókna. Uczeni odkryli, że lód w takiej formie jest znacznie bardziej elastyczny niż jakikolwiek wcześniej uzyskany. Niektóre z włókien można było niemal zawijać w okręgi, a po zwolnieniu siły powracały one do oryginalnego kształtu.
Dotychczas największe eksperymentalnie obserwowane odkształcenie sprężyste lodu wynosiło około 0,3%. My uzyskaliśmy 10,9% w lodowych włóknach, mówią autorzy badań. Teoretyczna granica odkształcenia lodu wynosi pomiędzy 14 a 16,2 procent.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Międzynarodowy zespół naukowy, w skład którego weszli uczeni ze Szwajcarskiego Instytutu Technologicznego w Zurichu (ETH Zurich), wykazał, że niemal wszystkie ziemskie lodowce tracą masę, a tempo utraty lodu przyspiesza. To najszerzej zakrojone i najbardziej dokładne badania tego typu. To również pierwsze badania, w których uwzględniono wszystkie lodowce na Ziemi, z wyjątkiem tych znajdujących się na Grenlandii i Antarktydzie.
Autorzy badań uwzględnili w swoich analizach niemal 220 000 lodowców. Stwierdzili, że w latach 2000–2019 średnio każdego roku traciły one 267 gigaton (miliardów ton) lodu. To ilość wystarczająca, by każdego roku całą powierzchnię Polski zalała warstwa wody o głębokości niemal 1 metra. Widoczne jest też wyraźne przyspieszenie tempa utraty lodu. O ile bowiem w latach 200–2004 średnie roczne tempo utraty lodu wynosiło 227 GT, to w latach 2015–2019 było to 298 gigaton.
Topnienie lodowców jest odpowiedzialne za 21% wzrostu poziomu oceanów – czyli za 0,74 mm przyrostu rocznie. Za połowę tego przyrostu odpowiada zwiększenie objętości wody spowodowane jej wyższą temperaturą, a pozostała 1/3 przyrostu to wina lodowców Grenlandii, Antarktydy oraz zmian ilości wody przechowywanej na lądach.
Najszybciej tracą masę lodowce Alaski, Islandii i Alp. Zmiany klimatu bardzo silnie wpływają tez na lodowce w Pamirze, Hindukuszu i Himalajach. Szczególnie niepokojące jest to, co dzieje się w Himalajach. W porze suchej woda z lodowców jest ważnym źródłem zasilającym wielkie rzeki: Ganges, Indus i Bramaputrę. Obecnie przyspieszone topnienie tych lodowców działa jak bufor, dostarczając wodę ludziom żyjącym w regionie. Jeśli jednak tempo topnienia himalajskich lodowców będzie nadal przyspieszało, to w ciągu najbliższych dekad ludzie w Indiach i Bangladeszu doświadczą niedoborów wody i żywność, ostrzega Romain Hugonnet, główny autor badań, pracownik ETH Zurich i Uniwersytetu w Tuluzie.
Naukowcy ze zdziwieniem zauważyli, że istnieją obszary, na których w latach 2000–2019 utrata masy lodowców... spowolniła. Obszary te to wschodnie wybrzeże Grenlandii, część Islandii i Skandynawii. specjaliści uważają, że przyczyną takiego stanu rzeczy jest anomalia pogodowa na Północnym Atlantyku, która spowodowała, że w latach 2010–2019 pojawiły się tam niższe temperatury i niższe opady, co spowolniło utratę lodu. Jest to jednak prawdopodobnie zjawisko przejściowe. Zauważono bowiem, że w innym miejscu świata dochodzi do zaniku podobnej anomalii. Tak zwana anomalia Karakorum spowodowała, że do roku 2010 lodowce Karakorum pozostawały stabilne, a w niektórych przypadkach nawet się rozrastały. Obecnie jednak tracą one masę podobnie jak inne lodowce.
Na potrzeby analizy wykorzystano zdjęcia wykonywane od 1999 roku przez satelitę Terra. Okrąża on Ziemię co 100 minut na wysokości niemal 700 kilometrów. Naukowcy wykorzystali wszystkie wykonane przez niego zdjęcia i analizowali je przez 18 miesięcy za pomocą superkomputera na University of Northern British Columbia. W pracach, obok naukowców z Zurichu i Tuluzy, brali udział specjaliści z Uniwersytetów w Oslo, Ulsterze, Northern British Columbia i Szwajcarskiego Federalnego Instytutu Badań nad Lasem, Śniegiem i Krajobrazem.
Artykuł Accelerated global glacier mass loss in the early twenty-first century został opublikowany na łamach Nature.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Od ostatnich 30 lat Biegun Południowy ociepla się ponadtrzykrotnie szybciej niż średnia globalna, wynika z badań przeprowadzonych przez profesora Ryana Fogta i Kyle'a Clema z Ohio State University. Naukowcy informują, że ocieplanie to jest głównie powodowane przez naturalną zmienność klimatu i dodatkowo wzmacniane przez emisję gazów cieplarnianych.
Clem, który obecnie pracuje na nowozelandzkim Victoria University, mówi, że zawsze pasjonowała go pogoda, jej potęga i nieprzewidywalność. Dzięki pracy z Ryanem nauczyłem się wszystkiego o klimacie Antarktyki i półkuli południowej. Przede wszystkim zaś dowiedziałem się wiele o Antarktyce Zachodniej, jego ocieplaniu się, topnieniu lodu i wzrostu poziomu oceanów. Antarktyka doświadcza jednych z największych ekstremów i zmienności pogodowych na planecie, a w powodu jej izolacji, bardzo niewiele o tym kontynencie wiemy. Co roku zaskakuje nas czymś nowym, mówi Clem.
Wiemy, że przez cały XX wiek większość Antarktyki Zachodniej oraz Półwysep Antarktyczny ogrzewały się i dochodziło do utraty lodu. Jednocześnie zaś Biegun Południowy, znajdujący się w odległym wysoko położonym regionie, ochładzał się aż do lat 80. ubiegłego wieku. Od tamtej pory znacząco się ocieplił.
Clem i jego zespół przeanalizowali dane ze stacji pogodowej na Biegunie Południowym oraz wykorzystali modele klimatyczne do zbadania mechanizmu ocieplania się wnętrza Antarktyki. Okazało się, że w latach 1989–2018 Biegun Południowy ocieplił się o 1,8 stopnia Celsjusza. Średnie tempo ogrzewania wynosiło więc 0,6 stopnia na dekadę, było więc trzykrotnie większe niż średnia globalna w tym czasie.
Autorzy badań stwierdzili, że ogrzewanie się wnętrza Antarktyki jest spowodowane głównie przez tropiki, szczególnie zaś przez wysokie temperatury wód oceanicznych zachodniego Pacyfiku, które doprowadziły do zmiany rozkładu wiatrów na Południowym Atlantyku, przez co zwiększył się transport ciepłego powietrza nad Biegun Południowy. Te zmiany na południowym Atlantyku to, zdaniem uczonych, ważny mechanizm powodujący anomalie klimatyczne we wnętrzu Antarktyki.
Zdaniem Clema i Fogta, ogrzewanie się wnętrza kontynentu, mimo iż sam mechanizm zmian jest naturalny, nie miałoby miejsca gdyby nie działalność człowieka. Naturalny mechanizm, czyli zmiana układu wiatrów u atlantyckich wybrzeży Antarktyki spowodowana przez temperatury wód na zachodnim Pacyfiku, został bowiem bardzo wzmocniony przez emisję gazów cieplarnianych, przez którą wody Pacyfiku są wyjątkowo gorące.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Rośliny potrzebują dwutlenku węgla do przeprowadzania fotosyntezy. Zatem więcej dwutlenku węgla w atmosferze zwiększa wzrost roślin (mechanizm ten, o czym informowaliśmy, w tak prosty sposób działa jedynie w warunkach laboratoryjnych). Jednocześnie jednak więcej CO2 w atmosferze oznacza wyższą temperaturę, co może m.in. spowodować niedobory wody potrzebnej rośliną, ograniczać ich wzrost i zwiększać ryzyko usychania. Na łamach PNAS ukazał się właśnie artykuł, którego autorzy stwierdzają, że od poziomu CO2 czy ogólnego wzrostu temperatury ważniejszy dla roślin jest stosunek obu tych czynników.
Korzyścią, jaką lasy odnoszą ze zmiany klimatu, jest zwiększony poziom atmosferycznego CO2, dzięki czemu drzewa mogą zużywać mniej wody przy bardziej intensywnej fotosyntezie. Jednak problemem związanym ze zmianą klimatu są rosnące temperatury, które powodują, że drzewa zużywają więcej wody, a fotosynteza przebiega wolniej. Na podstawie realistycznego modelu fizjologii drzew zbadaliśmy wpływ tych przeciwstawnych sobie zjawisk, czytamy w artykule.
Z badań wynika, że niekorzystny wpływ wzrostu temperatury tylko do pewnej granicy będzie kompensowany przez wzrost stężenia dwutlenku węgla. Jeśli wzrost temperatury będzie szybszy niż wzrost CO2, a proporcje pomiędzy oboma zjawiskami przekroczą pewien poziom, lasy mogą sobie nie poradzić. Jak mówią naukowcy, istniały pewne różnice pomiędzy różnymi typami lasów, ale ogólny wpływ obserwowanych zjawisk był prawdziwy dla wszystkich lasów.
Wspomniana granica, powyżej której lasy przestaną sobie radzić, zależy od tego, jak szybko będą w stanie dostosować się do zmian klimatu. Niektóre gatunki drzew są w stanie zareagować fizycznymi zmianami na suszę czy inne stresory środowiskowe i dzięki nim zmaksymalizować wykorzystanie dostępnych zasobów. Drzewa te mogą na przykład zmienić kształt liści czy dostosować tempo fotosyntezy.
Autorzy badań przyjrzeli się wpływowi wzrostowi CO2 i temperatury na lasy w USA. Sprawdzili też, czy zdolności aklimatyzacyjne różnych gatunków drzew będą odgrywały tutaj rolę.
Okazało się, że jeśli lasy będą w stanie się zaaklimatyzować, to dodatkowa koncentracja CO2 na każdy 1 stopień wzrostu temperatury musi wynieść co najmniej 67 ppm, by drzewa nadal mogły rosnąć. Taki scenariusz rozwoju sytuacji przewiduje 71% modeli klimatycznych wykorzystanych na potrzeby obecnych badań. Jeśli zaś drzewom nie uda się zaaklimatyzować, to wzrost koncentracji CO2 musi wynieść co najmniej 89 ppm na każdy stopień. Taki scenariusz jest przewidywany przez nieco ponad połowę wykorzystanych modeli. To zaś oznacza, że wciąż istnieje olbrzymia niepewność co do tego, co stanie się z lasami.
Dodatkowym problemem jest fakt, że nawet jeśli wspomniany stosunek CO2 do temperatury wykroczy poza określoną granicę na jeden sezon lub podobnie krótki czas, drzewa mogą zacząć wymierać. Ponadto autorzy badań nie brali pod uwagę wzrostu temperatur na pasożyty drzew czy pożary lasów.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.