
ATLAS potwierdza: w CERN-ie prawdopodobnie zaobserwowano toponium
dodany przez
KopalniaWiedzy.pl, w Astronomia i fizyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Teleskop ATLAS (Asteroid Terrestrial-impact Last Alert System) w Rio Hurtado w Chile odkrył międzygwiezdną kometę. Oficjalnie oznaczona jako 3I/ATLAS jest trzecim znanym nam obiektem spoza Układu Słonecznego. Kometa nadciąga z kierunku gwiazdozbioru Strzelca i znajduje się obecnie około 4,5 jednostek astronomicznych (670 milionów kilometrów) od Ziemi.
Astronomowie przeszukali archiwa innych urządzeń i stwierdzili, że kometa jest też widoczna w danych z trzech różnych teleskopów na całym świecie oraz w Zwicky Transient Facility. Najstarsze z tych obserwacji pochodzą z 14 czerwca. Natomiast już po zauważeniu komety przez ATLAS została ona zarejestrowana przez kolejne teleskopy.
Kometa nie stanowi zagrożenia dla naszej planety. Zbliży się do nas na minimalną odległość około 1,6 j.a. (240 milionów km). Swoje peryhelium (najmniejszą odległość od Słońca) osiągnie około 30 października. Znajdzie się wówczas wewnątrz orbity Marsa, w odległości około 1,4 j.a. od naszej gwiazdy.
Astronomowie z całego świata już zaczęli badać właściwości komety. 3I/ATLAS powinna być widoczna dla naziemnych teleskopów do końca września. Później znajdzie się zbyt blisko Słońca, by można ją było obserwować. Ponownie pojawi się po drugiej stronie gwiazdy około początku grudnia.
Pierwszym poznanym przez nas obiektem spoza Układu Słonecznego była 1I/Oumuamua, drugim 2I/Borisov.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W Wielkim Zderzaczu Hadronów wykonano pierwsze dedykowane pomiary masy bozonu Z. Naukowcy wykorzystali przy tym dane ze zderzeń protonów, które były przeprowadzane w eksperymencie LHCb podczas drugiej kampanii naukowej w 2016 roku. Przeprowadzone w CERN-ie badania to jednocześnie duży postęp w precyzji pomiarów LHC. Pokazuje bowiem, że z tak złożonego środowiska, jakie pojawia się w wyniku zderzeń wysokoenergetycznych protonów, można wyłowić niezwykle precyzyjne dane dotyczące poszczególnych cząstek.
Bozon Z to masywna elektrycznie obojętna cząstka, która pośredniczy w oddziaływaniach słabych, jednych z czterech podstawowych oddziaływań natury. Została ona odkryta w CERN-ie ponad 40 lat temu i odegrała ważną rolę w potwierdzeniu prawdziwości Modelu Standardowego. Jej precyzyjne pomiary, podobnie jak dokładne dane na temat wszystkich cząstek elementarnych, pozwalają nam lepiej poznać fizykę oraz poszukać zjawisk, które mogą wykraczać poza obowiązujące modele.
Na podstawie rozpadów 174 000 bozonów Z zarejestrowanych w LHCb stwierdzono obecnie, że masa spoczynkowa tej cząstki wynosi 91 184,2 megaelektronowoltów (MeV), a precyzja pomiaru wynosi ± 9,5 MeV. Takie wyniki są zgodne z pomiarami wykonanymi w poprzedniku LHC, zderzaczu LEP – gdzie przeprowadzano zderzenia elektronów i pozytonów – oraz w nieczynnym już amerykańskim Tevatronie, który zderzał protony i antyprotony. Co więcej, precyzja obecnego pomiaru jest zgodna z precyzją Modelu Standardowego, wynoszącą 8,8 MeV.
Dotychczas najdokładniejszy wynik – 91 187,6 ± 2,1 MeV – dały pomiary w LEP.
Najnowsze osiągnięcie otwiera drogę do jeszcze bardziej precyzyjnych pomiarów, jakich będzie można dokonać za pomocą przyszłego High-Luminosity LHC oraz do pomiarów za pomocą eksperymentów CMS i Atlas. Wyniki pomiarów z różnych eksperymentów wykonywanych w LHC są od siebie niezależne, co oznacza, że ich średnia wartość będzie obarczona jeszcze mniejszym marginesem niepewności.
High-Luminosity LHC może potencjalnie dokonać jeszcze bardziej dokładnych pomiarów bozonu Z niż LEP. Na początku pracy LHC wydawało się to niemożliwe, mówi rzecznik prasowy LHCb Vincenzo Vagnoni.
Źródło: Measurement of the Z-boson mass, https://arxiv.org/abs/2505.15582
« powrót do artykułu -
przez KopalniaWiedzy.pl
W Thomas Jefferson National Accelerator Facility dokonano pierwszych w historii pomiarów gluonów wewnątrz jądra atomowego. To duży krok w kierunku poznania rozkładu pola gluonowego (pola Yanga-Millsa) wewnątrz protonu, cieszy się jeden z członków zespołu badawczego, profesor Axel Schmidt z George Washington University. Jesteśmy na pograniczu wiedzy o „kleju atomowym”. W zasadzie nic o tym nie wiemy, więc przydatna jest każda nowa informacja. To jednocześnie niezwykle ekscytujące i bardzo trudne, dodaje profesor Or Hen z MIT.
Gluony to cząstki elementarne pośredniczące w oddziaływaniach silnych. Są „klejem” zlepiającym kwarki, z których powstają protony i neutrony. Z wcześniejszych badań wiemy, jaki jest rozkład gluonów w swobodnych – niezwiązanych w jądrze atomowym – protonach i neutronach. Nie wiemy jednak, jak wygląda on, gdy protony i neutrony znajdują się wewnątrz jądra. Tymczasem na początku lat 80. XX wieku zauważono, że kwarki wewnątrz protonów i neutronów znajdujących się w jądrze atomowym poruszają się wolniej, niż kwarki w swobodnych nukleonach. To zdumiewające zjawisko, nazwane efektem EMC, nie zostało dotychczas wyjaśnione. Naukowcy, którzy chcą się o nim więcej dowiedzieć, badają gluony podobnie, jak badają kwarki. Jednak pomiar rozkładu elektrycznie obojętnych gluonów jest daleko trudniejszy, niż posiadających ładunek kwarków.
Naukowcy z Jefferson Lab przyjrzeli się gluonom i kwarkom, wykorzystując w tym celu mezon J/ψ, czyli czarmonium. Cząstkę tę można uzyskać ostrzeliwując protony i neutrony fotonami. Czarmonium szybko rozpada się na elektron i pozyton. Wykrywanie par elektron-pozyton pozwala obliczyć, ile mezonów J/ψ powstało. Jako że w skład czarmonium wchodzi kwark powabny, którego nie ma w żadnym z nukleonów, wiadomo, że czarmonium powstaje w wyniku interakcji fotonu z gluonem.
Żeby uzyskać czarmonium w wyniku ostrzeliwania swobodnych protonów fotonami – co wcześniej robiono już w Jefferson Lab – trzeba wykorzystać strumień fotonów o dużej energii, co najmniej 8,2 GeV (gigaelektronowoltów). Jednak autorzy najnowszych badań otrzymali czarmonium korzystając z fotonów o mniejszych energiach.
Było to możliwe dzięki temu, że jako cel wykorzystali jądra deuteru, helu i węgla. Nukleony w jądrach atomowych, w przeciwieństwie do swobodnych nukleonów używanych jako cel stacjonarny w badaniach, poruszają się. Doszło więc do połączenia energii kinetycznej poruszającego się nukleonu z energią kinetyczną fotonu, która była poniżej wymaganego minimum, co w rezultacie dało energię powyżej minimum, wystarczającą do powstania czarmonium.
Dzięki takiemu rozwiązaniu uczeni z USA stali się pierwszymi, którzy zbadali fotoprodukcję mezonu J/ψ poniżej minimalnej energii fotonów wymaganej przy stacjonarnym protonie. A ponieważ ich celem były atomy, mierzyli w ten sposób gluony w protonach i neutronach znajdujących się w jądrze atomowym.
Podstawowa trudność w przeprowadzeniu takiego eksperymentu polegała na tym, że nikt wcześniej nie próbował czegoś podobnego, nie wiadomo więc było, w jaki sposób eksperyment przygotować, ani czy w ogóle jest on możliwy. Udało się w olbrzymiej mierze dzięki doktorowi Jacksonowi Pybusowi z Los Alamos National Laboratory. W ramach swojej pracy magisterskiej na MIT wykonał analizę teoretyczną, która zaowocowała zaprojektowaniem odpowiedniego badania. To unikatowe badania zarówno z punktu widzenia z fizyki, jak i techniki eksperymentalnej opracowanej przez magistranta. Nikt z nas, z wyjątkiem Jacksona, nie byłby w stanie tego zrobić, przyznają autorzy badań.
Gdy naukowcy porównali wyniki pomiarów z teoretycznymi obliczeniami, okazało się, że podczas eksperymentu powstało więcej czarmonium, niż przewiduje teoria. To dowodzi, że gluony w związanych nukleonach zachowują się inaczej, niż w nukleonach swobodnych. Potrzeba jednak znacznie więcej badań, by stwierdzić, na czym polegają te różnice. Jednak teraz, gdy wiadomo, w jaki sposób należy przygotować odpowiednie eksperymenty, prowadzenie takich pomiarów będzie łatwiejsze.
Źródło: First Measurement of Near-Threshold and Subthreshold J/ψ Photoproduction off Nuclei
« powrót do artykułu -
przez KopalniaWiedzy.pl
Doroczna konferencja fizyczna Recontres de Moriond przynosi kolejne – po łamaniu symetrii CP przez bariony – fascynujące informacje. Naukowcy pracujący przy eksperymencie CMS w CERN-ie donieśli o zaobserwowaniu w danych z Wielkiego Zderzacza Hadronów sygnałów, które mogą świadczyć o zaobserwowaniu najmniejszej cząstki złożonej. Uzyskane wyniki wskazują, że kwarki wysokie – najbardziej masywne i najkrócej istniejące ze wszystkich cząstek elementarnych – mogą na niezwykle krótką chwilę tworzyć parę z swoim odpowiednikiem w antymaterii (antykwarkiem wysokim) i tworzyć hipotetyczny mezon o nazwie toponium.
Model Standardowy, chociaż sprawdza się od dziesięcioleci, ma niedociągnięcia. Naukowcy próbują je wyjaśnić, poszukując dodatkowych, nieznanych obecnie, bozonów Higgsa. Właściwości takich – wciąż hipotetycznych – cząstek, mają być dość proste. Zakłada się, że powinny one oddziaływać z fermionami z siłą proporcjonalną do masy fermionu, a teorie postulujące istnienie dodatkowych bozonów Higgsa mówią, że powinny one łączyć się bardziej masywnymi kwarkami. Stąd też uwaga naukowców skupiona jest na kwarku wysokim. Ponadto, jeśli takie dodatkowe bozony Higgsa miałyby masę większą od 345 GeV – masa znanego nam bozonu Higgsa to 125 GeV – i rozpadałyby się na pary kwark wysoki-antykwark, to w Wielkim Zderzaczu Hadronów powinien pojawić się nadmiar sygnałów świadczących o produkcji takich par.
W eksperymencie CMS zauważono taki nadmiar, ale – co szczególnie przyciągnęło uwagę naukowców – zauważono go przy energiach stanowiących dolną granicę zakresu poszukiwań. To skłoniło fizyków pracujących przy CMS do wysunięcia hipotezy, że nadmiar ten pochodzi od kwarków wysokich i antykwarków wysokich znajdujących się w stanie quasi-związanym zwanym toponium.
Gdy rozpoczynaliśmy analizy, w ogólnie nie braliśmy pod uwagę możliwości zauważenia toponium. W analizie wykorzystaliśmy uproszczony model toponium. Hipoteza ta jest niezwykle ekscytująca, gdyż nie spodziewaliśmy się, że LHC zarejestruje toponium, mówi koordynator prac, Andreas Meyer z DESY (Niemiecki Synchrotron Elektronowy).
Co prawda nie można wykluczyć innych wyjaśnień zaobserwowanych zjawisk, ale z dotychczasowych badań wynika, że toponium w sposób wystarczający wyjaśnia zaobserwowany nadmiar sygnałów. Uzyskany przez nas przekrój czynny (prawdopodobieństwo) dla naszej uproszczonej hipotezy wynosi 8,8 pb (pikobarnów) ± 15%. Można powiedzieć, że to znacząco powyżej 5 sigma [5 sigma to wartość odchyleń standardowych, powyżej której można ogłosić odkrycie - red.], dodaje Meyer.
Jeśli uda się potwierdzić istnienie toponium, będzie to kolejne poznane kwarkonium, czyli stan utworzony przez kwarka i jego antykwark. Obecnie znamy czarmonium – to kwark powabny (charm) i jego antykwark – oraz bottomonium, czyli kwark spodni (bottom) i antykwark. Czarmonium zostało odkryte w SLAC w 1974 roku, a bottomium znaleziono trzy lata później w Fermilabie.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.