
Orzechy włoskie działają przeciwzapalnie i mogą chronić przed nowotworem jelita grubego
dodany przez
KopalniaWiedzy.pl, w Zdrowie i uroda
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Bakterie mikrobiomu jelitowego potrafią przekształcać kwasy żółciowe – końcowe produkty rozkładu endogennego cholesterolu – w związki, które wspomagają układ odpornościowy w walce z nowotworami poprzez blokowanie sygnalizacji androgenowej. Takie niespodziewane wyniki badań uzyskali naukowcy z Weill Conrell Medicine.
Jestem bardzo zdziwiony. O ile mi wiadomo nikt dotychczas nie zauważył, że molekuły takie jak kwasy żółciowe mogą w ten sposób wpływać na receptor androgenowy, stwierdził profesor Chun-Jun Guo z Wydziału Gastroenterologii i Hepatologii, który wraz z profesorem Davidem Artisem nadzorował prace badawcze.
Kwasy żółciowe powstają w wątrobie i trafiają do jelit, gdzie różne bakterie modyfikują ich strukturę chemiczną. Autorzy badań – doktorzy Wen-Bing Jin i Leyi Xiao – podejrzewali, że modyfikacje te mogą wpływać na działania kwasów żółciowych oraz na ich interakcję ze szlakami sygnałowymi. Postanowili więc bliżej przyjrzeć się temu zjawisku.
Okazało się, że bakterie potrafią wprowadzić poważne modyfikacje. Odkryliśmy ponad 50 różnych molekuł kwasów żółciowych zmienionych przez bakterie, informuje dr Guo. To odkrycie sprowokowało uczonych do dalszych badań. Kwasy żółciowe są bowiem steroidami, tak jak hormony płciowe. Oznacza to, że mają podobną strukturę. W głowach naukowców narodziło się więc pytanie, czy zmodyfikowane przez bakterie kwasy żółciowe mogą wchodzić w interakcje z receptorami hormonów płciowych. To był szalony pomysł, przyznaje Guo.
Gdy naukowcy przeanalizowali 56 zidentyfikowanych przez siebie kwasów żółciowych zmienionych przez mikrobiom, znaleźli wśród nich jednego antagonistę receptora androgenowego, czyli związek który blokował ten receptor. Następnie przyjrzeli się 44 wcześniej znanych zmodyfikowanych kwasów żółciowych i okazało się, że wśród nich jest 3 kolejnych antagonistów. Badacze zadali sobie więc kolejne pytanie: na które konkretnie komórki wpływają zmodyfikowane kwasy żółciowe i na jakie funkcje biologiczne tych komórek mają wpływ?
Receptor androgenowy obecny jest, między innymi, w niektórych komórkach układu odpornościowego, w tym w limfocytach T CD8. Już wczesniejsze badania wykazały, że zablokowanie tego receptora zwiększa zdolność tych limfocytów do zwalczania nowotworów. Uczeni przeprowadzili więc testy na myszach z nowotworem pęcherza, którym podawali zmodyfikowane przez bakterie kwasy żółciowe będące antagonistami receptora androgenowego. Wyniki badań sugerują, że te zmienione kwasy żółciowe zwiększały zdolność limfocytów T do przeżycia wewnątrz guza i niszczenia komórek nowotworowych, cieszy się doktor Collins. To pokazuje, jak ważne są związki pomiędzy naszym organizmem, a mikrobiomem jelit i wskazuje, że w przyszłych terapiach antynowotworowych należy brać pod uwagę aktywność mikrobiomu, dodaje doktor Artis.
Odkrycie otwiera kilka nowych możliwości na polu walki z nowotworami. Oznacza ono na przykład, że przed rozpoczęciem terapii antynowotworowej można będzie wprowadzić do jelit pacjenta konkretne bakterie, które zwiększą możliwości obronne organizmu. Można też będzie bezpośrednio podawać zmodyfikowane kwasy żółciowe.
Jednak najważniejszym wnioskiem płynącym z badań jest konieczność odpowiedniego dbania o mikrobiom jelitowy, a ten zaburzamy przede wszystkim nieprawidłową dietą. Do zbadania pozostaje kwestia, czy specjalna dieta zwiększy zdolności obronne naszego organizmu oraz jaki wpływ na zdrowie mogą mieć pochodzący z kwasów żółciowych antagoniści receptorów androgenowych na organizm zdrowego człowieka.
Jeśli chcemy utrzymać mikrobiom jelit w dobrym stanie powinniśmy jeść dużo warzyw (w tym kiszonek), gdyż dla zdrowia jelit ważne jest spożywanie odpowiedniej ilości błonnika. Należy też znacząco ograniczyć spożycie tłuszczów, mięsa (szczególnie czerwonego jak wieprzowina i wołowina) oraz produktów wysokoprzetworzonych. Na mikrobiom negatywnie wpływają też leki, alkohol i palenie papierosów (również te elektroniczne).
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na zbyt wysokie ciśnienie cierpi ponad 30% dorosłych ludzi. Nadciśnienie jest główną przyczyną niedokrwiennej choroby serca, udarów, bierze udział w rozwoju wielu innych chorób. Chorzy biorą leki, zaleca się im ograniczenie spożycia soli (sodu). Tymczasem wyniki badań przeprowadzonych na kanadyjskim University of Waterloo sugerują, że utrzymanie w diecie odpowiedniego stosunku potasu do sodu może być lepszym sposobem na obniżenie ciśnienia krwi, niż samo ograniczenie spożywania sodu.
Nasze badania wskazują, że dodanie do diety większej ilości pokarmu zawierającego potas, jak banany czy brokuły, ma większy pozytywny wpływ na ciśnienie, niż samo tylko ograniczenie sodu, mówi doktor Anita Layton, wykładowczyni matematyki stosowanej, informatyki, farmacji i biologii.
Sód i potas to elektrolity, pomagają w przesyłaniu sygnałów elektrycznych w organizmie, wpływają na ilość wody i spełniają wiele innych istotnych funkcji. Wcześni ludzie jedli dużo warzyw i owoców, więc nasz organizm mógł ewoluować tak, że najlepiej działa na diecie zawierającej dużo potasu i mało sodu. Dzisiejsza dieta zachodnia jest pełna sodu i uboga w potas. To może wyjaśniać, dlaczego problem nadciśnienia dotyczy przede wszystkim krajów uprzemysłowionych, dodaje główna autorka badań, doktorantka Melissa Stadt.
Nie od dzisiaj wiadomo, że zwiększenie spożycia potasu może pomóc w kontrolowaniu ciśnienia krwi. Uczeni z Kanady opracowali model matematyczny, który pokazuje, jak stosunek potasu do sodu wpływa na organizm. Ich model uwzględnia też różnice pomiędzy płciami. Dzięki niemu dowiedzieliśmy się, że co prawda u mężczyzn nadciśnienie rozwija się łatwiej niż u kobiet przed menopauzą, ale jednocześnie mężczyźni z większym prawdopodobieństwem reagują pozytywnie na zwiększenie stosunku potasu do sodu.
Ze szczegółami można zapoznać się w artykule Modulation of blood pressure by dietary potassium and sodium: sex differences and modeling analysis, opublikowanym na łamach American Journal of Physiology.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wcześniejsze badania nad nowotworami wskazywały, że gdy osoby cierpiące na niektóre rodzaje nowotworów – jak nowotwory piersi, pęcherza czy prostaty – przyjmowały codziennie niskie dawki aspiryny, nowotwory wolniej się rozprzestrzeniały. Dotychczas nie było wiadomo, w jaki sposób aspiryna spowalnia przerzutowanie nowotworów. Odkrycie mechanizmu działania aspiryny na nowotwory i określenie odpowiedniego dawkowania pozwoli na efektywne wykorzystanie tego środka u chorych.
Pomimo postępów w leczeniu nowotworów, wielu pacjentów z chorobami na wczesnych etapach otrzymuje leczenie, które powinno pomóc, ale później dochodzi u nich do nawrotu choroby z powodu mikroprzerzutów. Są one powodowane przez komórki nowotworowe, które rozsiały się po organizmie i pozostały uśpione. Większość immunoterapii kierowanych jest do pacjentów z rozwiniętym nowotworem dającym przerzuty. Jednak to okres, gdy nowotwór po raz pierwszy się rozprzestrzenia, daje nam unikatową okazję do jego zaatakowania, gdyż właśnie wtedy jego komórki są szczególnie podatne na atak ze strony układu odpornościowego, mówi profesor Rahul Roychoudhuri z University of Cambridge.
Naukowcy byli więc szczególnie zainteresowani, w jaki sposób aspiryna spowalnia przerzutowanie, bowiem aż 90% zgonów z powodu nowotworów jest powodowanych przez nowotwory, które dały przerzuty.
Uczeni przyjrzeli się 810 genom u myszy i stwierdzili, że 15 z nich wpływa na przerzutowanie nowotworów. Szczególnie ważnym spostrzeżeniem było stwierdzenie, że gdy myszy brakuje genu odpowiedzialnego za wytwarzanie proteiny ARHGEF1, pojawia się u niej mniej przerzutów w nowotworach płuc i wątroby. Badacze zauważyli, że ARHGEF1 tłumi działanie limfocytów T. Bliżej przyjrzeli się tej kwestii i spostrzegli, że ARHGEF1 jest włączana, gdy limfocyty T zostają wystawione na działanie tromboksanu A2 (TXA2). Tymczasem nie od dzisiaj wiadomo, że TXA2 jest powiązany z działaniem aspiryny.
Tromboksan A2 jest wytwarzany przez płytki krwi. Służy on do tworzenia się skrzepów, dzięki którym rany przestają krwawić. Czasem jednak może prowadzić do ataków serca czy udarów. Aspiryna zmniejsza produkcję TXA2, zapobiegając powstawaniu zakrzepów, stąd też jej działanie zapobiegające atakom serca i udarom. Teraz, dzięki nowym badaniom, wiemy, że aspiryna spowalnia przerzutowanie nowotoworów zmniejszając produkcję TXA2, dzięki czemu środek ten nie tłumi działania limfocytów T.
Badacze udowodnili to na mysim modelu czerniaka wykazując, że u myszy z tym nowotworem, którym podawano aspirynę, przerzutowanie było zmniejszone, a było to spowodowane właśnie zmniejszeniem oddziaływania TXA2 na limfocyty T.
Doznaliśmy olśnienia, gdy zauważyliśmy, że TXA2 tłumi działanie limfocytów T. Wcześniej nie wiedzieliśmy, dlaczego aspiryna zmniejsza przerzutowanie. To był moment, w którym kierunek naszych badań zmienił się na inny, niż przewidywaliśmy. Aspiryna i inne podobnie działające leki, mogą być tańszą alternatywą od terapii opartych na przeciwciałach, a przez to łatwiej dostępną na całym świecie, cieszy się główny autor badań, profesor Jie Yang.
Naukowcy rozpoczęli już współprace z profesor Ruth Langley z University College London, która prowadzi badania nad zastosowaniem aspiryny do zapobieżenia lub opóźnienia nawrotów nowotworów. To bardzo ważne odkrycie. Pozwala nam ono właściwie interpretować wyniki badań klinicznych i sprawdzić, kto odniesie największe korzyści z terapii aspiryną, mówi uczona. U niewielkiej grupy ludzi aspiryna może powodować poważne skutki uboczne, jak krwawienia z przewodu pokarmowego czy pojawienie się wrzodów żołądka. Dlatego tak ważnym jest zrozumienie, kto może odnieść korzyści z terapii, dodaje uczona.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Skład mikrobiomu jelit żyraf jest nie tyle determinowany tym, co jedzą, ale do jakiego gatunku należą, informują naukowcy z Uniwersytetu w Uppsali i Brown University. Uczeni badali związki pomiędzy dietą a mikrobiomem jelit trzech gatunków żyraf żyjących w Kenii. Ich badania pomogą w ochronie źródeł pożywienia tych zagrożonych wyginięciem zwierząt.
Badania polegały na analizie DNA roślin i bakterii obecnych w odchodach żyraf. Dzięki temu można było określić skład flory bakteryjnej oraz dietę zwierząt. Naukowcy zebrali próbki kału trzech różnych gatunków – żyrafy siatkowanej, żyrafy masajskiej i żyrafy sawannowej – które żyją w Kenii w pobliżu równika. Spodziewaliśmy się, że żyrafy o podobnej diecie będą miały podobny mikrobiom, jednak nie znaleźliśmy takiej zależności. Zamiast tego zauważyliśmy, że żyrafy mają mikrobiom specyficzny dla gatunku, nawet jeśli jego przedstawiciele żywią się zupełnie innymi roślinami. To sugeruje, że mikrobiom posiada pewien komponent ewolucyjny, którego nie rozumiemy, mówi główna autorka badań, Elin Videvall.
Wszystkie wspomniane gatunki są zagrożone. Ich dieta była zależna nie od przynależności gatunkowej, ale od miejsca, w którym mieszkały. Za to mikrobiom zależał od gatunku. Informacja o tym, co zwierzęta jedzą jest niezwykle istotna, szczególnie wówczas, gdy wyznacza się obszary chronione, na których gatunki mają przetrwać. Trzeba się wówczas upewnić, że zwierzęta będą miały tam dostęp do odpowiednich roślin.
Ze szczegółami badań można zapoznać się w najnowszym numerze pisma Global Ecology and Conservation.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Z pewnością znacie to uczucie, gdy po obfitym posiłku czujecie się najedzeni i nachodzi Was ochota na coś słodkiego. Naukowcy z Instytutu Badań nad Metabolizmem im. Maxa Plancka w Kolonii odkryli, że tajemnica tego zjawiska tkwi w mózgu. Okazało się bowiem, że te same komórki nerwowe, które informują nas, że już jesteśmy najedzeni, są też odpowiedzialne za nasze późniejsze pożądanie słodkości.
I u myszy, i u ludzi chęć zjedzenia czegoś słodkiego jest aktywowane przez uwolnienie peptydu opioidowego o nazwie beta-endorfina. Zablokowanie jej szlaku sygnałowego może być przydatne w leczeniu otyłości.
Uczeni z Kolonii, chcąc sprawdzić, dlaczego po obfitym posiłku chcemy zjeść coś słodkiego, badali reakcję myszy na cukier. Odkryli, że najedzone myszy wciąż jadły desery. Badania ich mózgów wykazały, że odpowiedzialne za to są niektóre neurony POMC, które aktywowały się natychmiast, gdy myszy zyskiwały dostęp do cukru. Gdy myszy były najedzone i jadły cukier neurony POMC uwalniały molekuły sygnałowe, które nie tylko informowały o sytości, ale stymulowały też beta-endorfinę. Ta z kolei działała na komórki nerwowe z receptorami opioidowymi, uruchamiając poczucie nagrody, co powodowało, że myszy jadły cukier nawet, gdy były już przejedzone. Szlak opioidowy był aktywowany tylko wówczas, gdy zwierzęta zjadały dodatkowy cukier, ale nie wtedy, gdy zjadały zwykłe pożywienie lub tłuszcz. Gdy naukowcy zablokowali ten szlak, myszy nie chciały jeść dodatkowego cukru. Zjawisko takie miało miejsce tylko u najedzonych myszy. Gdy zwierzęta były głodne zablokowanie beta-endorfiny nie powodowało, że nie chciały jeść.
Co ciekawe, mechanizm ten uruchamiał się gdy tylko myszy wyczuły cukier, nawet gdy jeszcze nie zaczynały go jeść. Co więcej, opiat był uwalniany także w mózgu myszy, które nigdy wcześniej nie miały z cukrem do czynienia. A gdy tylko pierwsza porcja cukru trafiła do pyska myszy, beta-endorfina trafiała do neuronów POMC, wzmacniając zapotrzebowanie na cukier.
Autorzy badań postanowili sprawdzić, czy taki sam mechanizm działa u ludzi. Badanym podawali roztwór cukru przez rurkę, jednocześnie skanując ich mózgi. W ten sposób stwierdzili, że doszło do zwiększonej aktywności w tym samym regionie mózgu, co u myszy. To region, który zawiera wiele receptorów opioidowych położonych blisko neuronów informujących o najedzeniu się. Z ewolucyjnego punktu widzenia, ma to sens. Cukier rzadko występuje w naturze, ale błyskawicznie dostarcza energię. Mózg jest więc zaprogramowany tak, by korzystać z cukru, gdy tylko to możliwe, mówi kierujący badaniami Henning Fenselau.
« powrót do artykułu
-
-
Ostatnio przeglądający 1 użytkownik