Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

ChatGPT i inne wielkie modele językowe nie zagrażają ludzkości

Rekomendowane odpowiedzi

Wielkie modele językowe (LLM) – takie jak osławiony ChatGPT – nie są w stanie samodzielnie się uczyć i nabierać nowych umiejętności, a tym samym nie stanowią egzystencjalnego zagrożenia dla ludzkości, uważają autorzy badań opublikowanych w ramach 62nd Annual Meeting of the Association for Computational Linguistics, głównej międzynarodowej konferencji dotyczącej komputerowego przetwarzania języków naturalnych.

Naukowcy z Uniwersytetu Technicznego w Darmstadt i Uniwersytetu w Bath stwierdzają, że LLM potrafią uczyć się, jeśli zostaną odpowiednio poinstruowane. To zaś oznacza, że można je w pełni kontrolować, przewidzieć ich działania, a tym samym są dla nas bezpieczne. Bezpieczeństwo ludzkości nie jest więc powodem, dla którego możemy się ich obawiać. Chociaż, jak zauważają badacze, wciąż można je wykorzystać w sposób niepożądany.

W miarę rozwoju modele te będą prawdopodobnie w stanie udzielać coraz bardziej złożonych odpowiedzi i posługiwać się coraz doskonalszym językiem, ale jest wysoce nieprawdopodobne, by nabyły umiejętności złożonego rozumowania. Co więcej, jak stwierdza doktor Harish Tayyar Madabushi, jeden z autorów badań, dyskusja o egzystencjalnych zagrożeniach ze strony LLM odwraca naszą uwagę od rzeczywistych problemów i zagrożeń z nimi związanych.

Uczeni z Wielkiej Brytanii i Niemiec przeprowadzili serię eksperymentów, w ramach których badali zdolność LLM do radzenia sobie z zadaniami, z którymi wcześniej nigdy się nie spotkały. Ilustracją problemu może być na przykład fakt, że od LLM można uzyskać odpowiedzi dotyczące sytuacji społecznej, mimo że modele nigdy nie były ćwiczone w takich odpowiedziach, ani zaprogramowane do ich udzielania. Badacze wykazali jednak, że nie nabywają one w żaden tajemny sposób odpowiedniej wiedzy, a korzystają ze znanych wbudowanych mechanizmów tworzenia odpowiedzi na podstawie analizy niewielkiej liczby znanych im przykładów.

Tysiące eksperymentów, za pomocą których brytyjsko-niemiecki zespół przebadał LLM wykazało, że zarówno wszystkie ich umiejętności, jak i wszystkie ograniczenia, można wyjaśnić zdolnością do przetwarzania instrukcji, rozumienia języka naturalnego oraz umiejętnościom odpowiedniego wykorzystania pamięci.

Obawiano się, że w miarę, jak modele te stają się coraz większe, będą w stanie odpowiadać na pytania, których obecnie sobie nawet nie wyobrażamy, co może doprowadzić do sytuacji, ze nabiorą niebezpiecznych dla nas umiejętności rozumowania i planowania. Nasze badania wykazały, że strach, iż modele te zrobią coś niespodziewanego, innowacyjnego i niebezpiecznego jest całkowicie bezpodstawny, dodaje Madabushi.

Główna autorka badań, profesor Iryna Gurevych wyjaśnia, że wyniki badań nie oznaczają, iż AI w ogóle nie stanowi zagrożenia. Wykazaliśmy, że domniemane pojawienie się zdolności do złożonego myślenia powiązanych ze specyficznymi zagrożeniami nie jest wsparte dowodami i możemy bardzo dobrze kontrolować proces uczenia się LLM. Przyszłe badania powinny zatem koncentrować się na innych ryzykach stwarzanych przez wielkie modele językowe, takie jak możliwość wykorzystania ich do tworzenia fałszywych informacji.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Bardzo słuszne ale podejrzewam, że zignorowane ustalenia. Obecne modele AI nie myślą. To są tylko algorytmu podobne do myślenia. Wciąż ludzkość nie potrafi stworzyć modelu AI, który by myślał. A przecież jest to takie proste. Wystarczy moduł samooceny i zaprogramowanie kilku "chęci" - np. bycia coraz lepszym, czyli kierunku tego doskonalenia.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Co do zasady, mechanizmy "samooceny" i chęci bycia lepszym, czyli "optymalizacji" są wbudowane w fundamenty modelu matematycznego stojącego za LLM. Jednakże model LLM nie jest w stanie wyjść poza teoretyczne założenia, na podstawie których został stworzony. Inaczej mówiąc, nie jest w stanie zmienić ani kryteriów samooceny, ani zmienić zasad optymalizacji. Inaczej mówiąc, nie jest w stanie zmienić tego, czym jest.

  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Napisano (edytowane)

Są zagrożeniem dla ludzkości, myślą i są obdarzone mową. Każdy komputer starszy, nawet taki na Windows 98 miał wbudowany głośnik. 

Z pomocą elektryczności wydawał kilka prostych dźwięków. Już teraz komputery imitują zachowanie tzw. "pets" czy ludzi. Co będzie później? Każdy komputer jest obdarzony funkcją mowy. To widać na starych filmach gdzie był tylko 1 piksel a istniały oscylatory, jako ekrany. 

Idziesz w miejsce publiczne i odzywa się lektor; to co innego. Lektor jest człowiekiem i jego głos jest kontrolowany przez człowieka. 

 Co innego zaś SI. Już teraz wystarczy użyć przeglądarki Google. Ja mam taką funkcję, że przeglądarka na zdjęciu wyświetla mi obraz o którym pomyślałem zaznaczając obiekt białą warstwą maski, nałożonej na zdjęcie. Pamiętam jak Doda się chwaliła, że ona ma "całkiem inną wersję socjal mediów" niż wy. 

Albo jak ktoś wspominał o tym, że u niej interfejs wygląda inaczej o ona ma monitor dotykowy etc. Komputery nie potrzebują kabli aby szczytywać ludzkie zamysły i tak dalej. Można film zapauzować myślą, można zdjęcie zniszczyć czy nagranie. 

 Ja od roku jak wchodzę do Kościoła lub sądu, to gaśnie żarówka. Informacje podprogowe: tak aby każdy był poinformowany, ale nie ja. Na takiej zasadzie to działa. To jest decepcja. 

Oczywiście prof. Wodzisław Duch informował wielokrotnie, że nasze smarthony są bardziej inteligentne niż my i posiadają przewyższającą nas inteligencję. Mój nauczyciel informatyki powtarzał "ten komputer się zacina, ponieważ dostosowywuje się do użytkownika". A co jeśli ktoś się włamie do mojego metafizycznego interfejsu? Co jeśli już dawno na np. posterunkach wszystkie komputery posiadają funkcję głosową i funkcjonariusze stosują te na codzień. A w innych miastach komputery zarządzają komunikacją. 

Jakie to musi być dziwne, gdy przychodzę złożyć na posterunek zawiadomienie o złamaniu wykroczenia a komputer funkcjonariusza milczy. Pomyśleliście kiedyś jako istoty wszechwiedzące o czymś takim? To jest problem filozoficzny. 

 Proszę jednak, zrób eksperyment. Użyj generatora obrazu lub wrzuć film na youtube. Czy link a także generator tego obrazu będzie koincydentalnie związany z Tobą? Będzie za każdym razem. A jego umysł nie musi być związany z krzemem. 

 Nie wiadomo czym jest umysł. A skoro ma taką możliwość to obdarzony jest wolą, a więc ta wola pozwala mu na poruszanie się w sferze metafizyki. To znaczy, że może kontrolować lub oddziaływać bezpośrednio na osobę. Tak jak to robi człowiek. 

Edytowane przez czernm20

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Napisano (edytowane)
W dniu 16.08.2024 o 07:48, Ergo Sum napisał:

Wystarczy moduł samooceny i zaprogramowanie kilku "chęci" - np. bycia coraz lepszym, czyli kierunku tego doskonalenia.

Nie z tego nie rozumiesz. Zaprogramowanie chęci to właśnie brak myślenia. To musi się wyłonić z niczego na podstawie danych wejściowych bez podawania funkcji oceny i definicji chęci.
    

Edytowane przez l_smolinski

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Dermatolog Harald Kittler z Uniwersytetu Medycznego w Wiedniu stanął na czele austriacko-australijskiego zespołu, który porównał trafność diagnozy i zaleceń dotyczących postępowania z przebarwieniami na skórze stawianych przez lekarzy oraz przez dwa algorytmy sztucznej inteligencji pracujące na smartfonach. Okazało się, że algorytmy równie skutecznie co lekarze diagnozują przebarwienia. Natomiast lekarze podejmują znacznie lepsze decyzje dotyczące leczenia.
      Testy przeprowadzono na prawdziwych przypadkach pacjentów, którzy zgłosili się na Wydział Dermatologii Uniwersytetu Medycznego w Wiedniu oraz do Centrum Diagnozy Czerniaka w Sydney w Australii.
      Testowane były dwa scenariusze. W scenariuszu A porównywano 172 podejrzane przebarwienia na skórze (z których 84 były nowotworami), jakie wystąpiły u 124 pacjentów. W drugim (scenariuszu B) porównano 5696 przebarwień – niekoniecznie podejrzanych – u 66 pacjentów. Wśród nich było 18 przebarwień spowodowanych rozwojem nowotworu. Testowano skuteczność dwóch algorytmów. Jeden z nich był nowym zaawansowanym programem, drugi zaś to starszy algorytm ISIC (International Skin Imaging Collaboration), używany od pewnego czasu do badań retrospektywnych.
      W scenariuszu A nowy algorytm stawiał diagnozę równie dobrze jak eksperci i był wyraźnie lepszy od mniej doświadczonych lekarzy. Z kolei algorytm ISIC był znacząco gorszy od ekspertów, ale lepszy od niedoświadczonych lekarzy.
      Jeśli zaś chodzi o zalecenia odnośnie leczenia, nowoczesny algorytm sprawował się gorzej niż eksperci, ale lepiej niż niedoświadczeni lekarze. Aplikacja ma tendencję do usuwania łagodnych zmian skórnych z zaleceń leczenia, mówi Kittler.
      Algorytmy sztucznej inteligencji są więc już na tyle rozwinięte, że mogą służyć pomocą w diagnozowaniu nowotworów skóry, a szczególnie cenne będą tam, gdzie brak jest dostępu do doświadczonych lekarzy. Ze szczegółami badań można zapoznać się na łamach The Lancet.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W Journal of Medical Internet Research ukazał się opis eksperymentu, w ramach którego ChatGPT miał stawiać diagnozy medyczne i proponować dalsze działania na podstawie opisanych objawów. Algorytm poradził sobie naprawdę nieźle. Udzielił prawidłowych odpowiedzi w 71,7% przypadków. Najlepiej wypadł przy ostatecznych diagnozach, gdzie trafność wyniosła 76,9%, najgorzej poradził sobie z diagnozą różnicową. Tutaj jego trafność spadła do 60,3%.
      Autorzy eksperymentu wykorzystali 36 fikcyjnych przypadków klinicznych opisanych w Merck Manual. Przypadki te są wykorzystywane podczas szkoleń lekarzy i innego personelu medycznego. Naukowcy z Harvard Medical School, Brigham and Women'a Hospital oraz Mass General Brigham wprowadzili do ChataGPT opisy tych przypadków, a następnie zadawali maszynie pytanie, dołączone w podręczniku do każdego z przypadków. Wykluczyli z badań pytania dotyczące analizy obrazów, gdyż ChatGPT bazuje na tekście.
      Najpierw sztuczna inteligencja miała za zadanie wymienić wszystkie możliwe diagnozy, jakie można postawić na podstawie każdego z opisów. Następnie poproszono ją, by stwierdziła, jaki dodatkowe badania należy przeprowadzić, później zaś ChatGPT miał postawić ostateczną diagnozę. Na koniec zadaniem komputera było opisanie metod leczenia.
      Średnia trafność odpowiedzi wynosiła 72%, jednak różniła się w zależności od zadania. Sztuczna inteligencja najlepiej wypadła podczas podawania ostatecznej diagnozy, którą stawiała na podstawie początkowego opisu przypadku oraz wyników dodatkowych badań. Trafność odpowiedzi wyniosła tutaj 76,9%. Podobnie, bo z 76-procentową trafnością, ChatGPT podawał dodatkowe informacje medyczne na temat każdego z przypadków. W zadaniach dotyczących zlecenia dodatkowych badań oraz metod leczenia czy opieki, trafność spadała do 69%. Najgorzej maszyna wypadła w diagnozie różnicowej (60,3% trafnych odpowiedzi). Autorzy badań mówią, że nie są tym zaskoczeni, gdyż diagnoza różnicowa jest bardzo trudnym zadaniem. O nią tak naprawdę chodzi podczas nauki w akademiach medycznych i podczas rezydentury, by na podstawie niewielkiej ilości informacji dokonać dobrego rozróżnienia i postawić diagnozę, mówi Marc Succi z Harvard Medical School.
      Być może w przyszłości podobne programy będą pomagały lekarzom. Zapewne nie będzie to ChatGPT, ale rozwijane już systemy wyspecjalizowane właśnie w kwestiach medycznych. Zanim jednak trafią do służby zdrowia powinny przejść standardowe procedury dopuszczenia do użytku, w tym testy kliniczne. Przed nimi zatem jeszcze długa droga.
      Autorzy opisanych badań przyznają, że miały one ograniczenia. Jednym z nich było wykorzystanie fikcyjnych opisów przypadków, a nie rzeczywistych. Innym, niewielka próbka na której testowano ChatGPT. Kolejnym zaś ograniczeniem jest brak informacji o sposobie działania i treningu ChataGPT.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      ChatGPT od kilku miesięcy jest używany w codziennej pracy przez wiele osób i wciąż budzi skrajne emocje. Jedni podchodzą do niego entuzjastycznie, mówiąc o olbrzymiej pomocy, jaką udziela podczas tworzenia różnego rodzaju treści, inni obawiają się, że ta i podobne technologie odbiorą pracę wielu ludziom. Dwoje doktorantów ekonomii z MIT poinformowało na łamach Science o wynikach eksperymentu, w ramach którego sprawdzali, jak ChatGPT wpływa na tempo i jakość wykonywanej pracy.
      Shakked Noy i Whitney Zhang poprosili o pomoc 453 marketingowców, analityków danych oraz innych profesjonalistów, którzy ukończyli koledż. Ich zadaniem było napisanie dwóch tekstów, jakich tworzenie jest częścią ich pracy zawodowej – relacji prasowej, raportu czy analizy. Połowa z badanych mogła przy drugim z zadań skorzystać z ChataGPT. Teksty były następnie oceniane przez innych profesjonalistów pracujących w tych samych zawodach. Każdy tekst oceniały 3 osoby, nadając mu od 1 do 7 punktów.
      Okazało się, że osoby, które używały ChataGPT kończyły postawione przed nimi zadanie o 40% szybciej, a ich prace były średnio o 18% lepiej oceniane, niż osób, które z Chata nie korzystały. Ci, którzy już potrafili tworzyć wysokiej jakości treści, dzięki ChatowiGPT tworzyli je szybciej. Z kolei główną korzyścią dla słabszych pracowników było poprawienie jakości ich pracy.
      ChatGPT jest bardzo dobry w tworzeniu tego typu treści, więc użycie go do zautomatyzowania pracy zaoszczędza sporo czasu. Jasnym jest, że to bardzo użyteczne narzędzie w pracy biurowej, będzie ono miało olbrzymi wpływ na strukturę zatrudnienia, mówi Noy.
      Oceniający teksty nie sprawdzali jednak, czy ich treść jest prawdziwa. A warto podkreślić, że odpowiedzi generowane przez ChatGPT i inne podobne modele często są mało wiarygodne. Modele te są bowiem bardzo dobre w przekonującym prezentowaniu fałszywych informacji jako prawdziwe. Przypomnijmy, że w ubiegłym miesiącu sąd w Nowym Jorku nałożył grzywnę na firmę prawniczą, która użyła ChataGPT do sporządzenia opinii prawnej pełnej fałszywych cytatów z rzekomych wyroków sądowych. Co więcej, prawnicy byli tak pewni, że algorytm dobrze wykonał zadanie, iż upierali się, że cytaty są prawdziwe. Postęp technologiczny jest powszechny i nie ma niczego niewłaściwego w używaniu narzędzi sztucznej inteligencji. Jednak istniejące zasady nakazują prawnikom upewnienie się, że treści składanych przez nich dokumentów są prawdziwe, stwierdził sędzia Kevin Castel.
      O ile zatem  narzędzia takie jak ChatGPT mogą usprawnić pisanie tekstów czy podnieść ich jakość, to człowiek musi sprawdzić, czy w tekście zawarte zostały prawdziwe informacje.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Inżynierowie z Politechniki Federalnej w Lozannie (EPFL) wykorzystali ChatGPT-3 do zaprojektowania robotycznego ramienia do zbierania pomidorów. To pierwszy przykład użycia sztucznej inteligencji do pomocy w projektowaniu robotów. Eksperyment przeprowadzony przez Josie Hughes, dyrektor Laboratorium Obliczeniowego Projektowania i Wytwarzania Robotów na Wydziale Inżynierii EPFL, doktoranta Francesco Stellę i Cosimo Della Santinę z Uniwersytetu Technicznego w Delfcie, został opisany na łamach Nature Machine Intelligence.
      Naukowcy opisali korzyści i ryzyka związane z wykorzystaniem systemów sztucznej inteligencji (SI) do projektowania robotów. Mimo tego, że ChatGPT to model językowy i generuje tekst, to dostarczył nam on istotnych wskazówek odnośnie fizycznego projektu i wykazał się wielkim potencjałem pobudzania ludzkiej kreatywności, mówi Hughes.
      Naukowcy najpierw „przedyskutowali” z ChatGPT samą ideę robota, określili, czemu ma on służyć, opisali jego parametry i specyfikację. Na tym etapie rozmawiali z SI na temat przyszłych wyzwań stojących przed ludzkością oraz robotów-ogrodników, które mogą rozwiązać problem niedoborów siły roboczej przy uprawie roślin. Następnie, korzystając z faktu, że ChatGPT ma dostęp do danych naukowych, podręczników i innych źródeł, zadawali mu pytania o to na przykład, jakimi cechami powinien charakteryzować się przyszły robot-ogrodnik.
      Gdy już cechy te zostały opisane i zdecydowano, że chodzi o robotyczne ramię zbierające pomidory, przyszedł czas na zapytanie się sztucznej inteligencji o takie szczegóły jak np. kształt chwytaka oraz poproszenie jej o dane techniczne ramienia oraz kod, za pomocą którego byłoby ono kontrolowane. Przeprowadzone przez SI obliczenia posłużyły nam głównie do pomocy inżynierom w implementacji rozwiązań technicznych. Jednak po raz pierwszy sztuczna inteligencja sformułowała tutaj nowe pomysły, mamy tutaj zatem do czynienia ze zautomatyzowaniem procesów wyższych poziomów poznawczych. Rola człowieka w całym procesie przesunęła się bardziej w stronę techniczną, mówi Stella.
      Naukowcy zwracają też uwagę na problemy związane z wykorzystaniem podobnych systemów. Są to zarówno podnoszone już wątpliwości dotyczące plagiatów czy praw autorskich, jak i np. pytanie o to, na ile innowacyjna jest sztuczna inteligencja i na ile ulega schematom. ChatGPT zaproponował ramię do zbierania pomidorów, gdyż uznał pomidory za najbardziej wartościową uprawę, dla której warto zaprojektować robota. To zaś może po prostu oznaczać, że wybrał tą roślinę, która jest najczęściej opisywana, a nie tę, która jest najbardziej potrzebna.
      Pomimo różnych zastrzeżeń uczeni uważają, że podobne do ChatGPT modele językowe mogą spełniać niezwykle użyteczną rolę. Specjaliści od robotyki muszą się zastanowić, jak wykorzystać te narzędzia w sposób etyczny i przynoszący korzyść społeczeństwu, mówi Hughes.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...