ChatGPT i inne wielkie modele językowe nie zagrażają ludzkości
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Troje naukowców – Elizabeth A Barnes z Colorado State University, Noah S Diffenbaugh z Uniwersytetu Stanforda oraz Sonia I Seneviratne z EHT Zurich – zebrało dane z 10 modeli klimatycznych i przeanalizowało je za pomocą algorytmów sztucznej inteligencji. Na łamach Environmental Research Letters poinformowali, że z tak przeprowadzonych badań wynika, iż globalne temperatury będą rosły szybciej niż zakładano, a jeszcze za naszego życia niektóre regiony doświadczą średniego wzrostu temperatury przekraczającego 3 stopnie Celsjusza.
Autorzy badań stwierdzili, że w 34 ze zdefiniowanych przez IPCC 43 regionów lądowych Ziemi średni wzrost temperatury przekroczy 1,5 stopnia Celsjusza do roku 2040. W 31 z tych 34 regionów należy spodziewać się wzrostu o 2 stopnie do roku 2040. Natomiast do roku 2060 w 26 regionach średnia temperatura wzrośnie o ponad 3 stopnie.
Regionami narażonymi na szybszy niż przeciętny wzrost temperatur są południowa Azja, region Morza Śródziemnego, Europa Środkowa i niektóre części Afryki Subsaharyjskiej.
Profesor Diffenbaugh zauważył, że ważne jest, by nie skupiać się tylko na temperaturach globalnych, ale zwracać uwagę na temperatury lokalne i regionalne. Badając, jak rośnie temperatura w poszczególnych regionach, będziemy mogli określić, kiedy i jakie skutki będą odczuwalne dla społeczności i ekosystemów tam żyjących. Problem w tym, że regionalne zmiany klimatyczne są trudniejsze do przewidzenia. Dzieje się tak dlatego, że zjawiska klimatyczne są bardziej chaotyczne w mniejszej skali oraz dlatego, że trudno powiedzieć, jak dany obszar będzie reagował na ocieplenie w skali całej planety.
« powrót do artykułu -
przez KopalniaWiedzy.pl
„Ala ma kota” to pierwsze i – prawdę mówiąc – jedyne zdanie, jakie pamiętam z elementarza. I właśnie to zdanie, które kolejne pokolenia poznają dzięki legendarnemu „Elementarzowi” Falskiego prowadzi nas przez „Prosto o AI. Jak działa i myśli sztuczna inteligencja” autorstwa Roberta Trypuza. Niewielki format książeczki sugeruje, że znajdziemy w niej niezbyt wiele informacji. Nic bardziej mylnego. To elementarz, skoncentrowana skarbnica wiedzy o technologii, która już teraz w znaczącym stopniu zmienia ludzkie życie.
Robert Trypuz jest praktykiem. To specjalista w dziedzinie Semnatic Web i inżynierii danych. Doktorat z informatyki i telekomunikacji uzyskał na Uniwersytecie w Trydencie, jest też doktorem habilitowanym filozofii z KUL. I, co widać w książce, jest entuzjastą sztucznej inteligencji, o której potrafi bardzo ciekawie pisać.
Z „Prosto o AI” dowiemy się na przykład jak wygląda programowanie AI w porównaniu z programowaniem klasycznym, jak AI rozumie tekst, czym jest osadzanie słów oraz jakie rewolucyjne podejście pozwoliło na skonstruowanie dużych modeli językowych, w tym najbardziej znanego z nich ChataGPT. Przeczytamy o sieciach konwolucyjnych w medycynie, uczeniu ze wzmacnianiem, autor – pamiętajmy, że jest również filozofem – opisuje, czym jest sztuczna wolna wola, zatem czy AI ma wolną wolę.
W ostatnim zaś odcinku znajdziemy rozważania na temat wpływu sztucznej inteligencji na proces edukacji. Nie ma w tym zdaniu pomyłki, odcinku, a nie rozdziale. Historia jest mianowicie taka, że treści zawarte w tej książce nie zostały napisane do tej książki. Pisałem je jako scenariusze odcinków programu, który nigdy nie powstał, pisze Robert Trypuz we wstępie. I może właśnie pochodzenie tekstu, który zamienił się w książkę, powoduje, że tak łatwo można przyswoić zawarte w niej informacje.
Dla kogo jest zatem „Prosto o AI”? Dla każdego z nas, kto nigdy bardziej nie zagłębił się w tajniki sztucznej inteligencji. Tutaj znajdzie jej podstawy wyjaśnione w prosty sposób. Większości czytelników pogłębienie wiedzy do tego stopnia w zupełności wystarczy, jakąś zaś część zachęci, by sięgnąć po kolejne, bardziej szczegółowe i specjalistyczne pozycje. Ja czytałem książkę Trypuza z olbrzymim zainteresowaniem i przyjemnością.
-
przez KopalniaWiedzy.pl
Dermatolog Harald Kittler z Uniwersytetu Medycznego w Wiedniu stanął na czele austriacko-australijskiego zespołu, który porównał trafność diagnozy i zaleceń dotyczących postępowania z przebarwieniami na skórze stawianych przez lekarzy oraz przez dwa algorytmy sztucznej inteligencji pracujące na smartfonach. Okazało się, że algorytmy równie skutecznie co lekarze diagnozują przebarwienia. Natomiast lekarze podejmują znacznie lepsze decyzje dotyczące leczenia.
Testy przeprowadzono na prawdziwych przypadkach pacjentów, którzy zgłosili się na Wydział Dermatologii Uniwersytetu Medycznego w Wiedniu oraz do Centrum Diagnozy Czerniaka w Sydney w Australii.
Testowane były dwa scenariusze. W scenariuszu A porównywano 172 podejrzane przebarwienia na skórze (z których 84 były nowotworami), jakie wystąpiły u 124 pacjentów. W drugim (scenariuszu B) porównano 5696 przebarwień – niekoniecznie podejrzanych – u 66 pacjentów. Wśród nich było 18 przebarwień spowodowanych rozwojem nowotworu. Testowano skuteczność dwóch algorytmów. Jeden z nich był nowym zaawansowanym programem, drugi zaś to starszy algorytm ISIC (International Skin Imaging Collaboration), używany od pewnego czasu do badań retrospektywnych.
W scenariuszu A nowy algorytm stawiał diagnozę równie dobrze jak eksperci i był wyraźnie lepszy od mniej doświadczonych lekarzy. Z kolei algorytm ISIC był znacząco gorszy od ekspertów, ale lepszy od niedoświadczonych lekarzy.
Jeśli zaś chodzi o zalecenia odnośnie leczenia, nowoczesny algorytm sprawował się gorzej niż eksperci, ale lepiej niż niedoświadczeni lekarze. Aplikacja ma tendencję do usuwania łagodnych zmian skórnych z zaleceń leczenia, mówi Kittler.
Algorytmy sztucznej inteligencji są więc już na tyle rozwinięte, że mogą służyć pomocą w diagnozowaniu nowotworów skóry, a szczególnie cenne będą tam, gdzie brak jest dostępu do doświadczonych lekarzy. Ze szczegółami badań można zapoznać się na łamach The Lancet.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W Journal of Medical Internet Research ukazał się opis eksperymentu, w ramach którego ChatGPT miał stawiać diagnozy medyczne i proponować dalsze działania na podstawie opisanych objawów. Algorytm poradził sobie naprawdę nieźle. Udzielił prawidłowych odpowiedzi w 71,7% przypadków. Najlepiej wypadł przy ostatecznych diagnozach, gdzie trafność wyniosła 76,9%, najgorzej poradził sobie z diagnozą różnicową. Tutaj jego trafność spadła do 60,3%.
Autorzy eksperymentu wykorzystali 36 fikcyjnych przypadków klinicznych opisanych w Merck Manual. Przypadki te są wykorzystywane podczas szkoleń lekarzy i innego personelu medycznego. Naukowcy z Harvard Medical School, Brigham and Women'a Hospital oraz Mass General Brigham wprowadzili do ChataGPT opisy tych przypadków, a następnie zadawali maszynie pytanie, dołączone w podręczniku do każdego z przypadków. Wykluczyli z badań pytania dotyczące analizy obrazów, gdyż ChatGPT bazuje na tekście.
Najpierw sztuczna inteligencja miała za zadanie wymienić wszystkie możliwe diagnozy, jakie można postawić na podstawie każdego z opisów. Następnie poproszono ją, by stwierdziła, jaki dodatkowe badania należy przeprowadzić, później zaś ChatGPT miał postawić ostateczną diagnozę. Na koniec zadaniem komputera było opisanie metod leczenia.
Średnia trafność odpowiedzi wynosiła 72%, jednak różniła się w zależności od zadania. Sztuczna inteligencja najlepiej wypadła podczas podawania ostatecznej diagnozy, którą stawiała na podstawie początkowego opisu przypadku oraz wyników dodatkowych badań. Trafność odpowiedzi wyniosła tutaj 76,9%. Podobnie, bo z 76-procentową trafnością, ChatGPT podawał dodatkowe informacje medyczne na temat każdego z przypadków. W zadaniach dotyczących zlecenia dodatkowych badań oraz metod leczenia czy opieki, trafność spadała do 69%. Najgorzej maszyna wypadła w diagnozie różnicowej (60,3% trafnych odpowiedzi). Autorzy badań mówią, że nie są tym zaskoczeni, gdyż diagnoza różnicowa jest bardzo trudnym zadaniem. O nią tak naprawdę chodzi podczas nauki w akademiach medycznych i podczas rezydentury, by na podstawie niewielkiej ilości informacji dokonać dobrego rozróżnienia i postawić diagnozę, mówi Marc Succi z Harvard Medical School.
Być może w przyszłości podobne programy będą pomagały lekarzom. Zapewne nie będzie to ChatGPT, ale rozwijane już systemy wyspecjalizowane właśnie w kwestiach medycznych. Zanim jednak trafią do służby zdrowia powinny przejść standardowe procedury dopuszczenia do użytku, w tym testy kliniczne. Przed nimi zatem jeszcze długa droga.
Autorzy opisanych badań przyznają, że miały one ograniczenia. Jednym z nich było wykorzystanie fikcyjnych opisów przypadków, a nie rzeczywistych. Innym, niewielka próbka na której testowano ChatGPT. Kolejnym zaś ograniczeniem jest brak informacji o sposobie działania i treningu ChataGPT.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.