Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Grawitacja działa na antymaterię tak, jak na materię, potwierdzają fizycy z CERN

Rekomendowane odpowiedzi

Po raz pierwszy udało się bezpośrednio zaobserwować wpływ grawitacji na antymaterię. Fizycy z CERN eksperymentalnie wykazali, że grawitacja działa na antymaterię tak, jak i na materię – antyatomy opadają na źródło grawitacji. Nie jest to niczym niespodziewanym, różnica w oddziaływaniu grawitacji na materię i antymaterię miałaby bardzo poważne implikacje dla fizyki. Jednak bezpośrednia obserwacja tego zjawiska jest czymś, czego fizycy oczekiwali od dziesięcioleci. Oddziaływanie grawitacyjne jest bowiem niezwykle słabe, zatem łatwo może zostać zakłócone.

Naukowcy z CERN pracujący przy eksperymencie ALPHA wykorzystali atomy antywodoru, które są stabilne i elektrycznie obojętne, do badania wpływu grawitacji na antymaterię. Uczeni utworzyli antywodór łącząc antyprotony – uzyskane w urządzeniach AD i ELENA pracujących w Antimatter Factory – z pozytonami (antyelektronami) z radioaktywnego sodu-22. Atomy antywodoru umieszczono następnie w pułapce magnetycznej, która chroniła je przed wejściem w kontakt z materią i anihilacją. Całość umieszczono w niedawno skonstruowanym, specjalnym urządzeniu o nazwie ALPHA-g, które pozwala na śledzenie losu atomów po wyłączeniu pułapki.

Symulacje komputerowe wykazywały, że – w przypadku materii – około 20% atomów powinno opuścić pułapkę przez górną jej część, a około 80% – przez dolną. Naukowcy wielokrotnie przeprowadzili eksperymenty z użyciem antymaterii, uwzględniając przy tym różne ustawienia pułapki i różne możliwe oddziaływania poza oddziaływaniami grawitacyjnymi. Po uśrednieniu wyników eksperymentów okazało się, że antymateria zachowuje się tak, jak materia. Około 20% atomów antywodoru uleciało z pułapki górą, a około 80% – dołem.

Potrzebowaliśmy 30 lat by nauczyć się, jak stworzyć antyatomy, jak utrzymać je w pułapce, jak je kontrolować i jak je uwalniać z pułapki, by oddziaływała na nie grawitacja. Następnym etapem naszych badań będą jak najbardziej precyzyjne pomiary przyspieszenia opadających antyatomów. Chcemy sprawdzić, czy rzeczywiście atomy i antyatomy opadają w taki sam sposób, mówi Jeffrey Hangst, rzecznik prasowy eksperymentu ALPHA.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Bardzo dobrze, zostaje potwierdzenie dla elektronów - jest ta słynna próba z 1967 Witteborn, Fairbank ( https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.19.1049 ) ... i wyszło im że przyspieszenie grawitacyjne dla elektronu jest blisko zero ... ale okazało się że jest to wina grawitacyjnego gradientu ładunku w rurce użytej do ekranowania, co niweluje efekt.

Ciekawe czy kiedyś się uda? Slajdy: https://indico.cern.ch/event/361413/contributions/1776296/attachments/1137816/1628821/WAG2015.pdf

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Czyli upadła moja teoria, co się stało z antymaterią, bo zakładała ona, że antymateria będzie działać anty-grawitacyjnie.
Ale badane było oddziaływanie dużego obiektu materii na mały obiekt antymaterii. Należałoby jeszcze sprawdzić, czy oddziaływanie dużego obiektu antymaterii na mały obiekt antymaterii, też będzie miało taki sam skutek. Niby wydaje się, że to niczego nie powinno zmienić, ale nie takie cuda już się w fizyce zdarzały.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Politechnika Wrocławska koordynuje prace nad wykorzystującą siłę grawitacji nowatorską metodą przechowywania energii. Współfinansowany przez Unię Europejską projekt „GrEnMine – Gravitational Energy storage in the post-Mine areas” ma za zadanie wspierać system elektroenergetyczny korzystający z odnawialnych źródeł energii. Demonstracyjna instalacja powstanie zaś w Kopalni Węgla Brunatnego Turów. Zespół z Wrocławia, na czele którego stoi profesor Przemysław Moczko, otrzymał milion euro na opracowanie koncepcji, obliczenia, symulacje i stworzenie systemu RM-GES (Rail-Mounted Gravitational Energy Storage).
      Najbardziej znaną i najpowszechniej stosowaną metodą grawitacyjnych magazynów energii są elektrownie szczytowo-pompowe. Gdy w sieci jest nadmiar energii, woda jest pompowana do wyżej położonego zbiornika, gdy zaś potrzebna jest dodatkowa energia, woda jest spuszczana i napędza turbinę. Projekt GrEnMine wykorzystuje podobną zasadę. Przy nadwyżce energii w sieci masę się unosi, gdy chcemy wykorzystać zgromadzoną w ten sposób energię, opuszczamy masę. Jeden z pomysłów zakłada wykorzystanie mechanizmu dźwigu podnoszącego dużą masę na wysokość nawet 100 metrów. Elementem przetwarzającym zgromadzoną energię potencjalną na prąd elektryczny może być generator z przemiennikiem częstotliwości.
      Odnawialne źródła energii (OZE) odgrywają coraz większą rolę w produkcji energii na całym świecie. Jeszcze w 2015 roku ze źródeł odnawialnych pochodziło ok. 24% energii elektrycznej używanej na świecie. Obecnie ze źródeł odnawialnych świat produkuje 32% energii. Wzrosty widać we wszystkich najważniejszych regionach. Na przykład w 2022 roku w USA udział źródeł odnawialnych w produkcji energii energetycznej wynosił 21,4%, co oznaczało wzrost o 161% w porównaniu z rokiem 2000. W Chinach w roku 2022 było to 30,2% (wzrost o 82%). W Polsce zaś udział źródeł odnawialnych w produkcji energii elektrycznej w 2022 roku wynosił 21,1%, czyli o 1219% więcej niż w roku 2000.
      Im większy udział mają OZE w produkcji energii, tym większym problemem staje się ich niestabilność i nieprzewidywalność. Konieczne jest przechowywanie energii w czasach jej nadpodaży i jej odzyskiwanie, gdy popyt jest większy.
      Magazynowanie energii jest bardzo ważnym wyzwaniem w dobie zwiększającego się wykorzystania odnawialnych, mniej stabilnych źródeł energii. Zadanie, którego się podjęliśmy, jest złożone i wymaga precyzyjnych obliczeń, symulacji, konstrukcji odpornych na ekstremalne obciążenia. Cały projekt to także sposób na nadanie nowej funkcji terenom, które przez dekady służyły wydobyciu. Teraz mogą znów służyć gospodarce, chociaż już w inny sposób – mówi prof. Moczko.
      Projekt potrwa do czerwca 2027 roku. Ma on zaowocować powstaniem gotowej instalacji demonstracyjnej oraz skalowalnym oodelem wdrożeniowym, dzięki któremu możliwe będzie zastosowanie opracowanego rozwiązania w całej Europie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Łaziki pracujące na Marsie czy Księżycu, mierzą się z wieloma problemami. Jednym z nich jest ryzyko utknięcia w grząskim gruncie. Gdy tak się stanie operatorzy podejmują serię delikatnych manewrów, by pojazd wydobyć. Nie zawsze się to udaje. Łazik Spirit zakończył misję jako stacjonarna platforma badawcza po tym, jak utknął w luźnym piasku. Czy takim wydarzeniom da się zapobiec? Inżynierowie z University of Wisconsin-Madison informują o znalezieniu poważnego błędu w procedurach testowania łazików. Jego usunięcie może spowodować, że pojazdy na Marsie i Księżycu będą narażone na mniejsze ryzyko.
      Błąd ten polega na przyjęciu zbyt optymistycznych i uproszczonych założeń co do tego, jak łaziki zachowują się poza Ziemią. Ważnym elementem testów naziemnych takich pojazdów jest sprawdzenie, w jaki sposób mogą się one poruszać po luźnym podłożu. Na Księżycu grawitacja jest 6-krotnie mniejsza niż na Ziemi, więc przez dekady, testując łaziki, naukowcy tworzyli prototypy o masie sześciokrotnie mniejszej niż łazik docelowy i testowali je na pustyni. Jednak ta metoda pomijała pewien istotny szczegół – wpływ grawitacji na piasek.
      Profesor Dan Negrut i jego zespół przeprowadzili symulacje, które wykazały, że Ziemia przyciąga ziarenka piasku silniej niż Mars czy Księżyc. Dzięki temu piasek na Ziemi jest bardziej zwarty. Jest mniejsze prawdopodobieństwo, że ziarna będą się pod nimi przesuwały. Jednak na Księżycu piasek jest luźniejszy, łatwiej się przemieszcza, więc obracające się koła trafiają na mniejszy opór. Przez to pojazdowi trudniej się w nim poruszać.
      Jeśli chcemy sprawdzić, jak łazik będzie sobie radził na Księżycu, musimy rozważać nie tylko wpływ grawitacji na pojazd, ale również wpływ grawitacji na piasek. Nasze badania pokazują, jak ważne są symulacje do badania możliwości jezdnych łazika na luźnym podłożu, wyjaśnia uczony.
      Uczeni dokonali swojego odkrycia podczas prac związanych z misją łazika VIPER, który ma trafić na Księżyc. We współpracy z naukowcami z Włoch stworzyli silnik Chrono, służący do symulacji zjawisk fizycznych, który pozwala na szybkie modelowanie złożonych systemów mechanicznych. I zauważyli istotne różnice pomiędzy wynikami testów VIPERA na Ziemi, a wynikami symulacji. Po przeanalizowaniu problemu znaleźli wspomniany błąd w procedurach testowych.
      Chrono to produkt opensource'owy, z którego skorzystały już setki firm i organizacji. Pozwala on lepiej zrozumieć najróżniejsze złożone mechanizmy, od mechanicznych zegarków po czołgi jeżdżące poza utwardzonymi drogami.
      Źródło: A Study Demonstrating That Using Gravitational Offset to Prepare Extraterrestrial Mobility Missions Is Misleading

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Polska fizyk, Barbara Latacz, jest główną autorką badań, w ramach których naukowcy skupieni w projekcie BASE w CERN zaprezentowali pierwszy w historii kubit z antymaterii. Na łamach pisma Nature Latacz i jej koledzy opisali, jak przez niemal minutę utrzymywali w pułapce antyproton oscylujący pomiędzy dwoma stanami kwantowymi. Badania te pozwolą na znaczne udoskonalenie metod badania różnic między materią i antymaterią.
      Proton i antyproton mogą przyjmować dwie wartości spinu. Pomiary zmiany tej wartości pozwalają na precyzyjne testowanie podstawowych praw przyrody, na przykład takich jak symetria CPT (ładunku, parzystości i czasu). Wskazuje ona, że materia i antymateria zachowują się identycznie, jednak jest to sprzeczne z obserwacjami, zgodnie z którymi materii we wszechświecie jest znacznie więcej niż antymaterii.
      Spójne kontrolowane zmiany stanu kwantowego obserwowano dotychczas albo w dużych grupach cząstek, albo w przypadku pojedynczych uwięzionych jonów. Nie udało się tego jednak zrobić dla pojedynczego swobodnego momentu magnetycznego jądra, czyli np. spinu pojedynczego protonu. Teraz dokonali tego naukowcy z projektu BASE.
      W ramach eksperymentu BASE badane są antyprotony dostarczane przez fabrykę antymaterii w CERN-ie. To jedyne miejsce na Ziemi, gdzie produkuje się niskoenergetyczne antyprotony. Są one przechowywane w elektromagnetycznych pułapkach Penninga i pojedynczo przesyłane do systemu pułapek, w których bada się m.in. ich spin.
      Już wcześniej zespół BASE dowiódł, że wartości momentów magnetycznych protonów i antyprotonów są identyczne z dokładnością do kilku części na miliard. Najmniejsza różnica wskazywałaby na naruszenie symetrii CPT, a to oznaczałoby istnienie fizyki poza Modelem Standardowym. Dotychczas jednak badania były zakłócane przez fluktuacje pola magnetycznego. W ostatnim czasie naukowcom udało się znakomicie ulepszyć eksperyment i zapobiec utracie stanu kwantowego, dzięki czemu przez 50 sekund można było badać spin antyprotonu.
      To pierwszy kubit zbudowany z antymaterii. Daje nam to możliwość zastosowania całego zestawu metod do precyzyjnego badania pojedynczych układów materii i antymaterii, mówi Stefan Ulmer z BASE. Uczony dodaje, że nowe osiągnięcie pozwoli na badanie momentu pędu antyprotonu nawet ze 100-krotnie większą precyzją, niż dotychczas.
      Jeszcze bardziej precyzyjne pomiary będą możliwe dzięki projektowi BASE-STEP, o którego pierwszym udanym teście poinformowano w maju bieżącego roku. Umożliwia on bezpieczne transportowanie antyprotonów uzyskanych w CERN-ie do spokojniejszych środowisk i bardziej precyzyjnych laboratoriów. Gdy już system będzie w pełni działał, nasz nowy przenośny układ pułapek Penninga, napełniony antyprotonami z fabryki, będzie transportowany za pomocą BASE-STEP, co pozwoli na nawet 10-krotne wydłużenie czasu koherencji antyprotonu. To będzie przełom w badaniach nad materią barionową, mówi Barbara Latacz.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W Wielkim Zderzaczu Hadronów (LHC) zarejestrowano najbardziej masywne hiperjądro antymaterii, jakie dotychczas odnotowano w tym akceleratorze. Badacze z eksperymentu ALICE wpadli na ślad antyhiperhelu-4, czyli odpowiednika hiperhelu-4 ze świata materii. Nieznaną dotychczas cząstkę zauważono w pochodzących ze zderzeń jąder ołowiu danych z 2018 roku.
      Podczas zderzeń ciężkich jonów w LHC powstaje plazma kwarkowo-gluonowa. Ten egotyczny stan materii wypełniał wszechświat przez jedną milionową sekundy po Wielkim Wybuchu. Badanie tej plazmy pomaga nam zrozumieć, w jaki sposób z kwarków i gluonów powstały hadrony oraz dlaczego we współczesnym wszechświecie istnieje nierównowaga pomiędzy materią i antymaterią.
      Hiperjądra to egzotyczne jądra powstałe z protonów, neutronów i hiperonów. Te ostatnie to niestabilne cząstki zawierające co najmniej jedne kwark dziwny, ale nie zawierające kwarka górnego i dolnego. Pierwsze hiperjądro odkryli w 1952 roku Marian Danysz i Jerzy Pniewski z Uniwersytetu Warszawskiego. Od ich zaobserwowania w promieniowaniu kosmicznym minęło zatem ponad 70 lat, a wciąż stanowią one tajemnicę dla nauki. Rzadko można je zaobserwować w naturze i bardzo trudno jest je badać w laboratorium.
      W zderzeniach ciężkich jonów powstaje sporo hiperjąder, jednak dotychczas zaobserwowano trzy. Pierwszym był hipertryton i jego partner z antymaterii, a antyhipertryton. Hipertryton składał się z protonu, neutronu i hiperonu lambda, więc antyhipertryton składał się z antyprotonu, antyneutronu i antylambda.
      Niecałe cztery miesiące temu informowaliśmy o znalezieniu najcięższego jądra antymaterii, antyhiperwodoru-4, zbudowanego z antyprotonu, dwóch antyneutronów i antyhiperonu lambda. Teraz naukowcy z ALICE poinformowali, że w 2018 roku podczas zderzeń jonów ołowiu przy energii 5,02 TeV pojawiły się dane wskazujące na powstanie antyhiperhelu-4. Jest ono złożone z dwóch antyprotonów, antyneutronu i antyhiperonu lambda. Poziom ufności obserwacji wynosi 3,5 sigma. To zbyt mało, by mówić o odkryciu, jednak na tyle dużo, że naukowcy uznali, iż warto o tym poinformować i prowadzić dalsze badania.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      CERN podpisał z trzema francuskimi dostawcami energii umowy, na podstawie których do roku 2027 około 10% zużywanej przez ośrodek energii będzie pochodziło z paneli fotowoltaicznych. Energia elektryczna stanowi około 95% całości energii wykorzystywanej przez CERN i kupowana jest we Francji. Obecnie roczne zapotrzebowanie ośrodka – w latach gdy pracują akceleratory – to 1300 GWh/rok, z czego Wielki Zderzacz Hadronów zużywa aż 55%.
      Podpisane umowy przewidują, że na południu Francji powstaną trzy duże farmy fotowoltaiczne, które od stycznia 2027 roku będą dostarczały w szczycie 95 MW, a rocznie zapewnią dostawę 140 GWh. Umowy podpisano na 15 lat. To 10% zapotrzebowania podczas pracy akceleratorów i 25% zapotrzebowania w czasie, gdy akceleratory są wyłączone przez dłuższy czas.
      Farmy fotowoltaiczne pracujące na potrzeby CERN-u będą miały powierzchnię około 90 hektarów. To około 40% powierzchni całego ośrodka. "Projekt o tej skali nie może zostać zrealizowany na terenie CERN-u, na przykład na dachach budynków czy parkingów. Sami możemy zapewnić sobie około 1% potrzebnej energii", wyjaśnia Nicolas Bellegarde, koordynator ds. energii w CERN-ie.
      Pierwszą z trzech umów podpisano już w sierpniu i zakłada ona budowę farmy w departamencie Lozère. Dwie kolejne – z września i października – oznaczają, że farmy powstaną w departamentach Bouches-du-Rhône i Var. Teraz wszystko zostało dopięte na ostatni guzik i budowa farm może się rozpocząć.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...