-
Similar Content
-
By KopalniaWiedzy.pl
Z im większą prędkością dwie powierzchnie metalowe przesuwają się po sobie, tym bardziej się zużywają. Okazało się jednak, że przy bardzo dużych prędkościach, porównywalnych z prędkością pocisku wystrzeliwanego pistoletu, proces ten ulega odwróceniu. Szybszy ruch powierzchni prowadzi do ich wolniejszego zużycia.
Gdy dwie metalowe powierzchnie ześlizgują się po sobie, zachodzi wiele złożonych procesów. Krystaliczne regiony, z których zbudowane są metale, mogą ulegać deformacjom, pęknięciom, mogą skręcić się czy nawet zlać. Występuje tarcie i niszczenie powierzchni. Ten niepożądany proces powoduje, że urządzenia się zużywają oraz ulegają awariom. Dlatego też ważne jest, byśmy lepiej zrozumieli zachodzące wówczas procesy. Podczas badań nad tym zjawiskiem naukowcy z Uniwersytetu Technicznego w Wiedniu (TU Wien) i Austriackiego Centrum Doskonałości Tribologii dokonali zaskakującego, sprzecznego z intuicją odkrycia.
W przeszłości tarcie mogliśmy badać tylko w czasie eksperymentów. W ostatnich latach dysponujemy superkomputerami na tyle potężnymi, że możemy w skali atomowej modelować bardzo złożone procesy zachodzące na powierzchniach materiałów, mówi Stefan Eder z TU Wien. Naukowcy modelowali różne rodzaje metalowych stopów. Nie były to doskonałe kryształy, ale powierzchnie bliskie rzeczywistości, złożone niedoskonałe struktury krystaliczne. To bardzo ważne, gdyż te wszystkie niedoskonałości decydują o tarciu i zużywaniu się powierzchni. Gdybyśmy symulowali doskonałe powierzchnie miałoby to niewiele wspólnego z rzeczywistością, dodaje Eder.
Z badań wynika, że przy dość niskich prędkościach, rzędu 10-20 metrów na sekundę, zużycie materiału jest niewielkie. Zmienia się tylko zewnętrzna jego warstwa, warstwy głębiej położone pozostają nietknięte. Przy prędkości 80–100 m/s zużycie materiału, jak można się tego spodziewać, wzrasta. Stopniowo wchodzimy tutaj w taki zakres, gdzie metal zaczyna zachowywać się jak miód czy masło orzechowe, wyjaśnia Eder. Głębiej położone warstwy materiału są ciągnięte w kierunku ruchu metalu przesuwającego się po powierzchni, dochodzi do całkowitej reorganizacji mikrostruktury.
Później zaś na badaczy czekała olbrzymia niespodzianka. Przy prędkości ponad 300 m/s zużycie ocierających się o siebie materiałów spada. Mikrostruktury znajdujące się bezpośrednio pod powierzchnią, które przy średnich prędkościach były całkowicie niszczone, pozostają w większości nietknięte. To zaskakujące dla nas i wszystkich zajmujących się tribologią. Jednak gdy przejrzeliśmy literaturę fachową okazało się, że obserwowano to zjawisko podczas eksperymentów. Jednak nie jest ono powszechnie znane, gdyż eksperymentalnie bardzo rzadko uzyskuje się tak duże prędkości, dodaje Eder. Wcześniejsi eksperymentatorzy nie potrafili wyjaśnić, dlaczego tak się dzieje. Dopiero teraz, dzięki symulacjom komputerowym, można pokusić się o bardziej dokładny opis.
Analiza danych komputerowych wykazała, że przy bardzo wysokich prędkościach w wyniku tarcia pojawia się duża ilość ciepła. Jednak ciepło to jest nierównomiernie rozłożone. Gdy dwa metale przesuwają się po sobie z prędkością setek metrów na sekundę, w niektórych miejscach rozgrzewają się do tysięcy stopni Celsjusza. Jednak pomiędzy tymi wysokotemperaturowymi łatami znajdują się znacznie chłodniejsze obszary. W wyniku tego niewielkie części powierzchni topią się i w ułamku sekundy ponownie krystalizują. Dochodzi więc do dramatycznych zmian w zewnętrznej warstwie metalu, ale to właśnie te zmiany chronią głębsze warstwy. Głębiej położone struktury krystaliczne pozostają nietknięte.
Zjawisko to, o którym w środowisku specjalistów niewiele wiadomo, zachodzi w przypadku różnych materiałów. W przyszłości trzeba będzie zbadać, czy ma ono również miejsce przy przejściu z dużych do ekstremalnych prędkości, stwierdza Eder. Bardzo szybkie przesuwanie się powierzchni metalicznych względem siebie ma miejsce np. w łożyskach czy systemach napędowych samochodów elektrycznych czy też podczas polerowania powierzchni.
Szczegóły badań zostały opublikowane na łamach Applied Materials Today.
« powrót do artykułu -
By KopalniaWiedzy.pl
Zjawisko Leidenfrosta znane jest ludzkości od tysiącleci. W jego wyniku krople cieczy spadając na gorącą powierzchnię, nie odparowują od razu, ale poruszają się nad nią. Ich odparowanie może trwać dłuższy czas. Spowodowane jest to tym, że w kontakcie cieczy z gorącą powierzchnią pojawia się para, która tworzy poduszkę. Krople lewitują, a para izoluje ciecz od powierzchni.
Naukowcy z Meksyku i Francji, pracujący pod kierunkiem Felipe Pacheco-Vázqueza z Benemérita Universidad Autónoma de Puebla, zaobserwowali właśnie nowy typ zjawiska Leidenfrosta i nazwali go potrójnym zjawiskiem Leidenfrosta.
Zespół Pacheco-Vázqueza sprawdzał, co się stanie, gdy wiele kropli zostanie umieszczonych na gorącej, nieco wklęsłej, powierzchni. Krople w naturalny sposób przesuwały się ku najniższemu punktowi powierzchni w centrum. Gdy używano wody, jej krople po spotkaniu się w centrum niemal natychmiast się łączyły w jedną dużą kroplę. Jednak gdy użyto wody i etanolu okazało się, że krople różnych cieczy wielokrotnie odbijają się od siebie, zanim się połączą.
Naukowcy wysunęli hipotezę, że zjawisko to zachodzi, gdyż pojawiają się trzy warstwy pary. Dwie pierwsze znajdują się pod każdą z kropli, a trzecia pojawia się pomiędzy nimi w momencie, gdy się stykają. Ta trzecia warstwa tworzy się z powodu różnicy temperatury wrzenia obu płynów. Różnica ta powoduje, że cieplejsza kropla – w tym wypadku woda – działa na etanol jak gorąca powierzchnia. Pomiędzy kroplami pojawia się więc warstwa pary, która uniemożliwia ich zlanie się i krople odbijają się od siebie.
W końcu kropla szybciej odparowującego etanolu staje się tak mała, że nie jest w stanie wytworzyć tyle pary, by zapobiec połączeniu się kropli. Wówczas się zlewają.
Badacze przetestowali swoją hipotezę używając 10 różnych rodzajów płynów. Okazało się, że mieli rację. Krople płynów o znacząco różnych temperaturach wrzenia odbijały się od siebie, podczas gdy płynów o podobnych temperaturach wrzenia do odbijania się nie dochodziło i krople szybko się łączyły.
Zdaniem odkrywców potrójnego zjawiska Leidenfrosta, dokładne jego zbadanie będzie pomocne w mikrofluidyce, nauce zajmującej się płynami w małej skali, gdzie siły powierzchniowe odgrywają główną rolę. Pozwoli to np. zrozumieć, jak oddziałują ze sobą krople paliwa w przegrzanych silnikach.
« powrót do artykułu -
By KopalniaWiedzy.pl
Przed siedmioma miesiącami, 28 kwietnia 2021 o godzinie 9:33 czasu polskiego, Parker Solar Probe stał się pierwszym pojazdem, który dotarł do korony Słońca. Pozostał w niej przez 5 godzin. To pierwszy wysłane przez człowieka urządzenie, które osiągnęło zewnętrzne granice naszej gwiazdy. Wyniki przeprowadzonych wówczas badań zostały właśnie opublikowane na łamach Physical Review Letters. Misja PSP osiągnęła swój główny cel i rozpoczęła nową epokę w rozumieniu fizyki korony Słońca, mówi profesor Justin C. Kasper w University of Michigan, główny autor artykułu.
Zewnętrzna krawędź Słońca jest wyznaczana przez powierzchnię krytyczną Alfvéna, miejscem poniżej którego Słońce i jego siły grawitacyjne i magnetyczne bezpośrednio kontrolują wiatr słoneczny. W 2018 roku NASA wystrzeliła Parker Solar Probę, której celem było osiągnięcie korony naszej gwiazdy. W kwietniu bieżącego roku PSP spędziła 5 godzin poniżej powierzchni krytycznej Alfvéna, w obszarze, gdzie ciśnienie i energia pola magnetycznego gwiazdy są silniejsze niż ciśnienie i energia cząstek przezeń emitowanych. Tym samym PSP stała się pierwszym pojazdem kosmicznym, który dotknął atmosfery naszej gwiazdy.
Ku zdumieniu naukowców okazało się, że powierzchnia krytyczna Alfvéna jest pofałdowana. Dane sugerują, że największe z tych fałd to skutek oddziaływania tzw. pseudostreamera. O ile streamery to długotrwale istniejące struktury oddzielające od siebie regiony magnetyczne o przeciwnej polaryzacji w koronie słonecznego, to pseudostreamery są przejściowymi strukturami oddzielającymi regiony magnetyczne o tej samej polaryzacji. Obecnie nie jest jasne, dlaczego pseudostreamery miałyby wypychać powierzchnię krytyczną Alfvéna.
Zauważono również, że poniżej powierzchni krytycznej tworzy się znacznie mniej fal Alfvéna niż powyżej tego punktu. Może to świadczyć, że nie powstają one w koronie. PSP zarejestrował też pewne dowody wskazujące na istnienie nieznanego mechanizmu fizycznego powodującego zwiększenie produkcji energii w koronie.
Od dziesięcioleci obserwujemy Słońce i jego koronę. Wiemy, że zachodzą tam interesujące zjawiska fizyczne związane z ogrzewaniem i przyspieszaniem plazmy. Jednak nie znamy dokładnie tych procesów. Dzięki Parker Solar Probe wlatującemu w koronę zyskaliśmy długo oczekiwany wgląd w wewnętrzne procesy zachodzące w tym regionie, mówi Nour E. Raouafi, jeden z naukowców pracujących przy projekcie.
Parker Solar Probe to urządzenie rozmiarów małego samochodu. Jego celem jest atmosfera Słońca znajdująca się w odległości około 6,5 miliona kilometrów od powierzchni naszej gwiazdy. Głównym celem misji jest zbadanie, w jaki sposób w koronie Słońca przemieszcza się energia i ciepło oraz odpowiedź na pytanie, co przyspiesza wiatr słoneczny. Naukowcy wiążą z misją olbrzymie nadzieje, licząc, że zrewolucjonizuje ona rozumienie Słońca, Układu Słonecznego i Ziemi.
Pojazd będzie musiał przetrwać temperatury dochodząc do 1370 stopni Celsjusza. Pomoże mu w tym gruba na 11,5 centymetra osłona termiczna (Thermal Protection System) z kompozytu węglowego. Jej celem jest ochrona czterech instrumentów naukowych, które będą badały pola magnetyczne, plazmę, wysokoenergetyczne cząstki oraz obrazowały wiatr słoneczny. Instrumenty mają pracować w temperaturze pokojowej. TPS składa się z dwóch paneli węglowego kompozytu, pomiędzy którymi umieszczono 11,5 centymetra węglowej pianki. Ta strona osłony, która będzie zwrócona w kierunku Słońca została pokryta specjalną białą warstwą odbijającą promieniowanie cieplne.
Osłona o średnicy 2,5 metra waży zaledwie 72,5 kilograma. Musiała być ona lekka, by poruszająca się z olbrzymią prędkością sonda mogła wejść na odpowiednią orbitę wokół naszej gwiazdy
Co interesujące, Parker Solar Probe jest pierwszym pojazdem kosmicznym NASA nazwanym na cześć żyjącej osoby. W ten sposób uhonorowano profesora astrofizyki Eugene'a Parkera z University of Chicago. Zwykle misje NASA zyskują nową, oficjalną nazwę, po starcie i certyfikacji. Tym razem jest inaczej. W uznaniu zasług profesora Parkera na polu fizyki Słońca oraz dla podkreślenia, jak bardzo misja jest związana z prowadzonymi przez niego badaniami, zdecydowano, że oficjalna nazwa zostanie nadana przed startem.
Aby nie ulec potężnej grawitacji Słońca, które stanowi przecież 99,8% masy Układu Słonecznego, PSP musi osiągnąć prędkość nie mniejszą niż 85 000 km/h. Nie jest to łatwe zadanie, dlatego też pojazd aż siedmiokrotnie skorzysta z asysty grawitacyjnej Wenus. W końcu znajdzie się w rekordowo małej odległości 6 milionów kilometrów od powierzchni naszej gwiazdy. Stanie się też najszybszym pojazdem w historii ludzkości. Jej prędkość wyniesie niemal 700 000 km/h.
Dotychczas sonda pięciokrotnie skorzystała z asysty grawitacyjnej Wenus. Ostatni, 5. przelot, miał miejsce 16 października. W przyszłym roku PSP zbliży się do Słońca 4-krotnie. Kolejne spotkanie z Wenus zaplanowano na 21 sierpnia 2023 roku. Następnie 5-krotnie pojazd spotka się ze Słońcem. W końcu, po ostatniej asyście, która będzie miała miejsce 6 listopada 2024, PSP kilkukrotnie przeleci w odległości około 6 milionów kilometrów od powierzchni naszej gwiazdy. Ostatni raz minimalną odległość osiągnie 12 grudnia 2025.
« powrót do artykułu -
By KopalniaWiedzy.pl
Zespół naukowców z Wielkiej Brytanii, Australii i USA opisuje na łamach Nature Astronomy wyniki swoich badań nad asteroidami, z których wynika, że ważnym źródłem wody dla formującej się Ziemi był kosmiczny pył. A w procesie powstawania w nim wody główną rolę odegrało Słońce.
Naukowcy od dawna szukają źródeł wody na Ziemi. Jedna z teorii mówi, że pod koniec procesu formowania się naszej planety woda została przyniesiona przez planetoidy klasy C. Już wcześniej naukowcy analizowali izotopowy „odcisk palca” planetoid typu C, które spadły na Ziemię w postaci bogatych w wodę chondrytów węglistych. Jeśli stosunek wodoru do deuteru byłby w nich taki sam, co w wodzie na Ziemi, byłby to silny dowód, iż to właśnie one były źródłem wody. Jednak uzyskane dotychczas wyniki nie są jednoznaczne. Woda zawarta w chondrytach w wielu przypadkach odpowiadała wodzie na Ziemi, jednak w wielu też nie odpowiadała. Częściej jednak ziemska woda ma nieco inny skład izotopowy niż woda w chondrytach. To zaś oznacza, że oprócz nich musi istnieć w Układzie Słonecznym co najmniej jeszcze jedno źródło ziemskiej wody.
Naukowcy pracujący pod kierunkiem specjalistów z University of Glasgow przyjrzeli się teraz planetoidom klasy S, które znajdują się bliżej Słońca niż planetoidy C. Przeanalizowali próbki pobrane z asteroidy Itokawa i przywiezione na Ziemię w 2010 roku przez japońską sondę Hayabusa. Dzięki najnowocześniejszym narzędziom byli w stanie przyjrzeć się strukturze atomowej poszczególnych ziaren próbki i zbadać pojedyncze molekuły wody. Wykazali, że pod powierzchnią Itokawy, w wyniku procesu wietrzenia, powstały znaczne ilości wody. Odkrycie to wskazuje, że w rodzącym się Układzie Słonecznym pod powierzchnią ziaren pyłu tworzyła się woda. Wraz z pyłem opadała ona na Ziemię, tworząc z czasem oceany.
Wiatr słoneczny to głównie strumień jonów wodoru i helu, które bez przerwy przepływają przez przestrzeń kosmiczną. Kiedy jony wodoru trafiały na powierzchnię pozbawioną powietrza, jak asteroida czy ziarna pyłu, penetrowały ją na głębokość kilkudziesięciu nanometrów i tam mogły wpływać na skład chemiczny skład i pyłu. Z czasem w wyniku tych procesów jony wodoru mogły łączyć się z atomami tlenu obecnymi w pyle i skałach i utworzyć wodę.
Co bardzo ważne, taka woda pochodząca z wiatru słonecznego, składa się z lekkich izotopów. To zaś mocno wskazuje, że poddany oddziaływaniu wiatru słonecznego pył, który opadł na tworzącą się Ziemię, jest brakującym nieznanym dotychczas źródłem wody, stwierdzają autorzy badań.
Profesor Phil Bland z Curtin University powiedział, że dzięki obrazowaniu ATP (Atom Probe Tomography) możliwe było uzyskanie niezwykle szczegółowego obrazu na głębokość pierwszych 50 nanometrów pod powierzchnią ziaren pyłu Itokawy, który okrąża Słońce w 18-miesięcznych cyklach. Dzięki temu zobaczyliśmy, że ten fragment zwietrzałego materiału zawiera tyle wody, że po przeskalowaniu było by to około 20 litrów na każdy metr sześcienny skały.
Z kolei profesor John Bradley z University of Hawai‘i at Mānoa przypomniał, że jeszcze dekadę temu samo wspomnienie, że źródłem wody w Układzie Słonecznym może być wietrzenie skał spowodowane wiatrem słonecznym, spotkałoby się z niedowierzaniem. Teraz wykazaliśmy, że woda może powstawać na bieżąco na powierzchni asteroidy, co jest kolejnym dowodem na to, że interakcja wiatru słonecznego z pyłem zawierającym tlen prowadzi do powstania wody.
Pył tworzący mgławicę planetarną Słońca był poddawany ciągłemu oddziaływaniu wiatru słonecznego. A z pyłu tego powstawały planety. Woda tworzona w ten sposób jest zatem bezpośrednio związana z wodą obecną w układzie planetarnym, dodają autorzy badań.
Co więcej, odkrycie to wskazuje na obfite źródło wody dla przyszłych misji załogowych. Oznacza to bowiem, ze woda może znajdować się w na pozornie suchych planetach. Jednym z głównych problemów przyszłej załogowej eksploracji kosmosu jest problem znalezienia wystarczających ilości wody. Sądzimy, że ten sam proces wietrzenia, w wyniku którego woda powstała na asteroidzie Itokawa miał miejsce w wielu miejscach, takich jak Księżyc czy asteroida Westa. To zaś oznacza, że w przyszłości astronauci będą mogli pozyskać wodę wprost z powierzchni planet, dodaje profesor Hope Ishii.
« powrót do artykułu -
By KopalniaWiedzy.pl
Naukowcy od dawna wiedzą, że duży koronalny wyrzut masy na Słońcu może poważnie uszkodzić sieci energetyczne, doprowadzając do braków prądu, wody, paliwa czy towarów w sklepach. Znacznie mniej uwagi przywiązują jednak do tego, jak takie wydarzenie wpłynie na internet. Jak się okazuje, skutki mogą być równie katastrofalne, a najsłabszym elementem systemu są podmorskie kable łączące kraje i kontynenty.
Przed kilkunastu laty amerykańskie Narodowe Akademie Nauk przygotowały na zlecenie NASA raport dotyczący skutków wielkiego koronalnego wyrzutu masy, który zostałyby skierowany w stronę Ziemi. Takie wydarzenie mogłoby pozbawić ludzi wody, towarów w sklepach, transportu publicznego i prywatnego, uniemożliwić działanie szpitali i przedsiębiorstw, doprowadzić do wyłączenia elektrowni. Jak wówczas informowali autorzy raportu same tylko Stany Zjednoczone poniosłyby w ciągu pierwszego roku straty rzędu 2 bilionów dolarów. Przywrócenie stanu sprzed katastrofy potrwałoby 4-10 lat.
Katastrofy naturalne zwykle są najbardziej odczuwane przez najbiedniejsze państwa. Wielki koronalny wyrzut masy jest zaś tym bardziej niebezpieczny, im bardziej rozwinięte państwo i im bardziej uzależnione jest od sieci energetycznej i – jak się okazuje – internetu.
Koronalne wyrzuty masy to gigantyczne obłoki plazmy, które co jakiś czas są wyrzucane przez Słońce w przestrzeń kosmiczną. Mają one masę miliardów ton i posiadają silne pole magnetyczne, które może uszkadzać satelity, sieci energetyczne i zakłócać łączność radiową.
Ludzkość nie ma zbyt wielu doświadczeń z tego typu wydarzeniami. W marcu 1989 roku w Kanadzie 6 milionów osób było przez 9 godzin pozbawionych prądu właśnie z powodu burzy na Słońcu. Jednak wiemy, że wyrzuty koronalne mogą być znacznie silniejsze. Najpotężniejsze znane nam tego typu zjawisko to wydarzenie Carringtona z 1859 roku. Kilkanaście godzin po tym, jak brytyjski astronom Richard Carrington zaobserwował dwa potężne rozbłyski na Słońcu, Ziemię zalało światło zórz polarnych.
Przestały działać telegrafy, a Ameryce Północnej, gdzie była noc, ludzie mogli bez przeszkód czytać gazety, doszło do kilku pożarów drewnianych budynków telegrafów, igły kompasów poruszały się w sposób niekontrolowany, a zorze polarne widać było nawet w Kolumbii. Jednak wydarzenie to miało miejsce na długo przed rozwojem sieci energetycznych. Obecnie tak silny rozbłysk miałby katastrofalne skutki.
Podczas zakończonej niedawno konferencji SIGCOMM 2021 profesor Sangeetha Abdu Jyothi z University of California Irvine, wystąpiła z odczytem Solar Superstorms. Planning for an Internet Apocalypse. Przedstawiła w nim wyniki swoich badań nad wpływem wielkiej chmury szybko poruszających się namagnetyzowanych cząstek słonecznych na światowy internet.
Z badań wynika, że nawet gdyby stosunkowo szybko udało się przywrócić zasilanie, to problemów z internetem doświadczalibyśmy przez długi czas. Dobra wiadomość jest taka, że lokalna i regionalna infrastruktura internetowa nie powinna zbytnio ucierpieć. Światłowody same w sobie są odporne na tego typu wydarzenia. Znacznie gorzej byłoby z przesyłaniem danych w skali całego globu.
Największe zagrożenie czyha na kable podmorskie. Przesyłają one dane przez tysiące kilometrów, a co 50–150 kilometrów są na nich zainstalowane wzmacniacze. I o ile sam podmorski kabel nie byłby narażony, to wielka burza słoneczna mogłaby uszkodzić te wzmacniacze. Gdy zaś doszłoby do uszkodzenia odpowiednich ich liczby, przesyłanie danych stałoby się niemożliwe. Co więcej, kable podmorskie są uziemiane co setki lub tysiące kilometrów, a to stwarza dodatkowe zagrożenie dla wzmacniaczy. Jakby jeszcze tego było mało, budowa geologiczna morskiego dna jest bardzo różna, i w niektórych miejscach wpływ burzy słonecznej na kable będzie silniejszy niż w innych. Zapomnijmy też o przesyłaniu danych za pomocą satelitów. Wielki rozbłysk na Słońcu może je uszkodzić.
Obecnie nie mamy modeli pokazujących dokładnie, co mogłoby się stać. Lepiej rozumiemy wpływ koronalnego wyrzutu masy na sieci energetyczne. Jednak one znajdują się na lądach. Jeszcze trudniej jest przewidywać, co może stać się na dnie morskim, mówi Abdu Jyothi.
Koronalne wyrzuty masy są bardziej niebezpieczne dla wyższych szerokości geograficznych, tych bliższych biegunom. Zatem Polska czy USA ucierpią bardziej niż położony w pobliżu równika Singapur. A Europa i Ameryka Północna będą miały większe problemy z internetem niż Azja.
Internet zaprojektowano tak, by był odporny na zakłócenia. Gdy dojdzie do awarii w jednym miejscu, dane są automatycznie kierowane inną drogą, by omijać miejsce awarii. Ale jednoczesna awaria w kilku czy kilkunastu kluczowych punktach zdestabilizuje całą sieć. Wszystko zależy od tego, gdzie do niej dojdzie. Wspomniany tutaj Singapur jest hubem dla wielu azjatyckich podmorskich kabli telekomunikacyjnych. Jako, że położony jest blisko równika, istnieje tam mniejsze ryzyko awarii w razie wielkiej burzy słonecznej. Ponadto wiele kabli w regionie jest dość krótkich, rozciągają się z huba w różnych kierunkach. Tymczasem kable przekraczające Atlantyk czy Pacyfik są bardzo długie i położone na wyższych, bardziej narażonych na zakłócenia, szerokościach geograficznych.
Niestety, podmorskie kable rzadko są zabezpieczane przed skutkami wielkich zaburzeń geomagnetycznych, takich jak burze słoneczne. Nie mamy doświadczenia z takimi wydarzeniami, a właściciele infrastruktury priorytetowo traktują cyberataki czy katastrofy naturalne mające swój początek na Ziemi i to przed nimi zabezpieczają swoje sieci.
Abdu Jyothi zauważa jednak, że o ile wielkie koronalne wyrzuty masy są niezwykle rzadkie, a jeszcze rzadziej są one skierowane w stronę Ziemi, to stawka jest tutaj bardzo duża. Długotrwałe zaburzenie łączności w skali globalnej miałoby negatywny wpływ niemal na każdy dział gospodarki i niemal każdego człowieka na Ziemi.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.