Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Sztuczna inteligencja kontra ChatGPT. Test systemów do wykrywania tekstów napisanych przez SI

Rekomendowane odpowiedzi

Wraz z rozwojem coraz doskonalszych generatorów tekstu, takich jak ChatGPT, coraz częściej pojawiają się głosy o potrzebie opracowania metod wykrywania tekstów stworzonych przez sztuczną inteligencję. Metody takie przydałyby się nauczycielom czy wykładowcom akademickim, którzy mogliby identyfikować prace pisemne przyniesione przez nieuczciwych uczniów i studentów, przedstawiających wygenerowany przez komputer tekst jako własne dzieło. Mówi się o kursach z wykrywania oszustw i o tworzeniu odpowiednich narzędzi. Takie narzędzia – bazujące na sztucznej inteligencji – już powstają. Problem w tym, że nie są one zbyt wiarygodne.

Naukowcy z Uniwersytetu Stanforda przyjrzeli się kilku algorytmom sztucznej inteligencji, które mają określać, czy zaprezentowany tekst został stworzony przez człowieka czy też przez inną sztuczną inteligencję. O ile jednak takie algorytmy sprawdzają się „niemal doskonale” podczas analizy tekstów pisanych przez 13-14-latków urodzonych w USA, to już zawodzą tam, gdzie mają do czynienia z angielskim tekstem napisanym przez osobę, dla której angielski nie jest językiem ojczystym. Okazało się bowiem, że gdy systemy te miały ocenić, kto jest autorem tekstu napisanego w ramach egzaminu TOEFL (Test of English as a Foreign Language), w aż 61,22% uznały, że to SI stworzyła tekst, który został napisany przez człowieka. W rzeczywistości jest jednak jeszcze gorzej. Aż 19% prac napisanych przez nastolatków, dla których angielski nie jest językiem ojczystym, zostało uznanych za stworzone przez SI przez wszystkie 7 badanych narzędzi do wykrywania fałszywek. A aż 97% napisanych przez ludzi prac zostało uznane za fałszywe przez co najmniej jeden z systemów.

Problem tkwi tutaj w sposobie pracy systemów wykrywających tekst napisany przez Si. Opierają się one bowiem na złożoności użytego języka. Oczywistym jest, że przeciętna osoba, która nie jest rodzimym użytkownikiem języka angielskiego ma mniejszy zasób słownictwa, a tworzone przez nią zdania są prostsze pod względem gramatycznym i składniowym od zdań rodzimego użytkownika angielskiego. Sztuczna inteligencja, próbując wykryć fałszywki, uznaje ten niższy poziom złożoności za znak, że tekst został stworzony przez sztuczną inteligencję. To poważny problem, gdyż uczeń czy student, który urodził się poza USA, może w ten sposób zostać uznany przez nauczyciela za oszusta, mimo że sam napisał pracę.

Co więcej, naukowcy ze Stanforda zauważyli, że takie systemy łatwo jest oszukać nawet rodzimemu użytkownikowi angielskiego. Okazuje się bowiem, że wystarczy wygenerować tekst za pomocą ChataGPT, a następnie wydać maszynie polecenie, by poprawiła ten tekst dodając doń słownictwo literackie.

Obecne wykrywacze są niewiarygodne i łatwo je oszukać, dlatego też należy używać ich bardzo ostrożnie w roli remedium na oszukiwanie za pomocą sztucznej inteligencji, mówi jeden z autorów badań, profesor James Zou.

Uczony uważa, że w najbliższej przyszłości nie należy ufać takim wykrywaczom, szczególnie w tych szkołach i uczelniach, gdzie mamy dużo uczniów, dla których angielski nie jest językiem macierzystym. Po drugie, twórcy narzędzi do wykrywania muszą zrezygnować ze złożoności jako głównego wyznacznika analizy tekstu i opracować bardziej zaawansowane techniki. Ponadto ich systemy powinny być bardziej odporne na obejście. Być może rozwiązanie problemu leży po stronie twórców takich systemów jak ChatGPT. Zou sugeruje, że tego typu generatory mogłyby dodawać do tekstu rodzaj znaku wodnego, którym byłyby subtelne sygnały, oczywiste dla systemów wykrywających, stanowiące niejako podpis generatora i wskazujące, że to on jest autorem.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Przy takiej złożoności LLM, w tym ChatGPT, moim zdaniem nie ma szans wykryć, że to Chat jest autorem. Możesz mu kazać poprawić błędy, napisać w jakimś konkretnym stylu, itd.

Co do znaku wodnego, ciężki pomysł. Jak niby miało by się to odbywać, skoro LLM imituje "mowę" ludzką, jest na niej wytrenowany i generuje ciąg słów tak jak człowiek (aczkolwiek bez sensu). Można by technicznie dodawać coś w post-procesingu, ale co, steganografia? Jak niby to miało by wyglądać? Do tego musiało by być jawne, a więc również łatwe do wykrycia, a co za tym idzie do usunięcia. Uczniowie nauczyliby się tego zanim powstał by pierwszy wykrywacz dla nauczycieli :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jak dla mnie edukacja to nie pisanie tekstów takich jak wypracowania zadane do domu. Szkoła nawet podstawowa jak dla mnie przestała uczyć przechodząc na tryb studiów.
Wykazanie posiadanej wiedzy można okazać w wiele innych sposobów a i tak podstawą jest jak najszybszy dostęp do posiadanej wiedzy.  
Teraz szkolnictwo zapędziło się w kozi róg i nauczyciele dalej brną w tym kierunku by się nie narobić sprawdzając wiedzę swoich uczniów.
Łatwiej im zadać cały program nauczania do domu a później na ładne oczy dać oceny.
Przypomina mi się ze studiów przykład jak z dwójką znajomych daliśmy praktycznie identyczne opracowania tego samego tematu bo mieliśmy pod ręką tą samą książkę. Traf chciał, że wykładowca wziął do ręki pierwszą pracę moją, bo następna miała ocenę mniej a trzecia niezaliczona.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Napisano (edytowane)

Na razie wszystkie generatory czatów AI mają jedną cechę: odpowiadając objaśniają teorię, co dla człowieka jest rzeczą zbędną, gdyż zakłada on że czytelnik ma oczywistą wiedzę. Bardzo często jest tak że ChatGPT pytany o konkret zaczyna się rozwodzić nad samą teorią danej problematyki. Z reguły ludzie po prostu mniej gadają. Wszelkie AI na razie gadają bardzo kwieciście. Weźmy choć Sophię - wystarczy spytać "jaka jest pogoda" - żeby usłyszeć co najmniej  z 5 długich zdań - podczas gdy człowiek odpowie "a, leje"

Edytowane przez Ergo Sum

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 20.05.2023 o 22:01, Ergo Sum napisał:

Bardzo często jest tak że ChatGPT pytany o konkret zaczyna się rozwodzić nad samą teorią danej problematyki.

ChatGPT jest narzędziem jak wszystko inne. Nie wie czego oczekujesz "Ty", a jest nauczony/poinstruowany odpowiadać obszernie. Natomiast, nic nie stoi na przeszkodzie powiedzieć mu o tym zadając pytanie i wtedy już masz. Wygooglaj "prompt engineering", a dowiesz się jak prawidłowo z nim rozmawiać i zadawać pytania, a otrzymasz 100x lepsze wyniki. Ba, jego zapytaj o to jak poprawnie to robić, z tym, że polecam po angielsku jednak, po polsku kaleczy, dużo tłumaczy z angielskiego w tle co rodzi dziwne sytuacje.

Zresztą:

W dniu 20.05.2023 o 22:01, Ergo Sum napisał:

Z reguły ludzie po prostu mniej gadają... - podczas gdy człowiek odpowie "a, leje"

Zmień towarzystwo :D

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      W niedawno opublikowanym wywiadzie Mark Zuckerberg stwierdził, że prawdopodobnie jeszcze w bieżącym roku firma Meta (właściciel Facebooka), podobnie jak inne wielkie firmy, będzie dysponowała systemem sztuczne inteligencji zdolnym do programowania na poziomie średnio doświadczonego inżyniera (mid-level engineer).
      Początkowo wdrożenie takich systemów będzie bardzo kosztowne i będą one musiały zyskać na wydajności, jednak z czasem dojdziemy to momentu, w którym bardzo duża część kodu używanych przez nas aplikacji, w tym kodu algorytmów sztucznej inteligencji, nie będzie pisana przez ludzi, a przez sztuczną inteligencję, stwierdził założyciel Facebooka.
      Słowa Zuckerberga to tylko jeden z sygnałów, że branżę programistyczną mogą w najbliższym czasie czekać olbrzymie zmiany. Sami programiści z jednej strony tworzą algorytmy sztucznej inteligencji, które w przyszłości mogą ich zastąpić, z drugiej zaś, coraz częściej korzystają z ich pomocy. Jeszcze na początku 2023 roku tylko 10% programistów używało AI do pomocy w programowaniu, pod koniec roku 2023 już 63% firm używało lub wdrażało użycie narzędzi AI pomagających w programowaniu. Pod koniec ubiegłego roku odsetek ten wzrósł do 80%.
      Zuckerberg nie jest jedynym wśród wiodących biznesmenów z branży IT, który zapowiada szybkie nadejście olbrzymich zmian. We wrześniu Matt Garman, szef Amazon Web Services, zasugerował, że w ciągu najbliższych 2 lat większość inżynierów oprogramowania przestanie zajmować się programowaniem. Zaś kilka miesięcy wcześniej prezes Nvidii stwierdził, że uczenie się programowania nie jest dobrym pomysłem, gdyż dzięki rozwojowi AI ludzki język staje się najważniejszym językiem programowania.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Pomiędzy lipcem 2021 roku a lutym 2023 roku 12 centrów mammograficznych w Niemczech brało udział w programie, w którym badania mammograficzne były wspomagane przez system sztucznej inteligencji. Radiolodzy sami decydowali, kiedy wykorzystać AI, a kiedy wykonać badania tradycyjnymi metodami. W tym czasie we wspomnianych centrach 119 radiologów przebadało 463 094 kobiety w wieku 50–69 lat. W przypadku 260 739 z nich diagnoza była wspomagana przez sztuczną inteligencję, pozostała część stanowiła grupę kontrolną.
      W grupie, w której badania wspomagane były przez AI, odsetek wykrytych nowotworów piersi wyniósł 0,67%, podczas gdy w grupie badanej tradycyjnymi metodami było to 0,57%. Ponadto tam, gdzie do badania użyto AI odsetek pań poddanych pogłębionej diagnostyce wyniósł 3,74%, a w grupie kontrolnej – 3,83%. Wartość predykcyjna dodatnia (PPV) dla grupy badanej przez AI wynosiła 17,9%, dla grupy kontrolnej – 14,9%. PPV pokazuje tę część podejrzanych wyników mammografii, które w pogłębionej diagnostyce rzeczywiście reprezentują chorobę.
      Najważniejszym wskaźnikiem przydatności algorytmu sztucznej inteligencji w badaniach mammograficznych jest fakt, że zwiększył on wykrywalność choroby bez zwiększania potrzeby przeprowadzenia pogłębionej diagnostyki. To już kolejne badania, które pokazały, że algorytmy sztucznej inteligencji rzeczywiście wspomagają pracę radiologów i mogą ratować życie kobiet.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W latach 1967–1978 roku Włoska Wyprawa Archeologiczna ISMEO prowadziła pierwsze badania w Shahr-i Sokhta (SiS) w Iranie. Szybko okazało się, że miasto składało się z trzech obszarów: mieszkalnego, cmentarza i przemysłowego. Jego największy rozkwit przypadł na połowę III tysiąclecia przed naszą erą, gdy obszar mieszkalny zajmował 80 hektarów. Miasto uznano za jeden z najważniejszych ośrodków na wschodzie Wyżyny Irańskiej. Zidentyfikowano tam cztery okresy kulturowe podzielone na 10 faz konstrukcyjnych, które datowano na od 2. połowy IV tysiąclecia do połowy III tysiąclecia. W południowej części miasta znaleziono duży cmentarz o powierzchni około 20 hektarów, a w jednym z grobów planszę do gry i bierki.
      Datowanie wykazało, że gra pochodzi z lat 2600–2700 p.n.e. W grobie nie znaleziono żadnej innej planszy, założono więc, że wszystkie bierki pochodzą z tej jednej gry i że jest ona kompletna. Planszę do gry złożono w pobliżu głowy zmarłej osoby, w pobliżu zaś stał koszyk z bierkami i kostkami. Plansza jest podobna do wcześniej znajdowanych plansz, ale istnieją między nimi też duże różnice. Kształt planszy z SiS jest niezwykle podobny do słynnej Królewskiej Gry z Ur, jednak gra z SiS ma więcej bierek i nie ma na niej rozety, która wydaje się bardzo ważnym elementem tego typu gier, znanych pod zbiorową nazwą „gier na 20 kwadratach”.
      Z Bliskiego Wschodu i spoza niego znamy ponad 100 plansz, w pewnej mierze do siebie podobnych, a w wielu aspektach różnych, które klasyfikowane są pod tą nazwą. Znaleziono je w Turkmenistanie czy Indiach. Podobnej gry używali Egipcjanie ok. 1580 roku p.n.e. Prawdopodobnie zapoznali się z nią za pośrednictwem Hyksosów. Podobne gry były popularne przez około 2000 lat.
      Autorzy nowych badań zaprzęgli algorytmy sztucznej inteligencji, do pracy nad odgadnięciem zasad gry. Wykorzystanie metod obliczeniowych do badań starożytnych gier, pozwala na symulowanie tysięcy możliwych zestawów zasad i wybranie tych najbardziej prawdopodobnych czy pasujących do gry i bierek.
      Gra z Shahr-i Sokhta wydaje się grą strategiczną – rodzajem wyścigu – podobną do Królewskiej Gry z Ur, ale bardziej złożoną. Zdaniem naukowców, mamy tutaj do czynienia z grą 2-osobową, a celem gracza jest przesunięcie przez pola planszy wszystkich 10 swoich bierek, zanim zrobi to przeciwnik. W grze gracze posługują się kostką i mogą wykorzystywać swoje bierki zarówno do jak najszybszego dotarcia do celu, jak i do blokowania ruchów przeciwnika. Badacze sugerują, że dodatkowe bierki, dzięki którym gra różni się np. od gry z Ur, dodawały jej złożoności. Widzimy wśród nich na przykład rozety, podobne do rozet, które w grze w Ur narysowane są na planszy. W przeciwieństwie do Królewskiej Gry z Ur, w przypadku gry z SiS losowość odgrywa mniejszą rolę, a większa rolę gra strategia.
      Po określeniu najbardziej prawdopodobnych zasad, grę z SIS przetestowało 50 doświadczonych graczy, który ocenili ją i porównali z Królewską Grą z Ur. Przyznali, że gra z SiS jest bardziej wymagająca pod względem strategii niż gra z Ur.
      Szczegóły badań zostały opublikowane na łamach Journal of the British Institute of Persian Studies. Gra z Shahr-i Sokhta została znaleziona w bogato wyposażonym grobie, ale nie był to grób królewski, co wskazuje, że była bardziej dostępna niż gra dla najwyższej elity.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Troje naukowców – Elizabeth A Barnes z Colorado State University, Noah S Diffenbaugh z Uniwersytetu Stanforda oraz Sonia I Seneviratne z EHT Zurich – zebrało dane z 10 modeli klimatycznych i przeanalizowało je za pomocą algorytmów sztucznej inteligencji. Na łamach Environmental Research Letters poinformowali, że z tak przeprowadzonych badań wynika, iż globalne temperatury będą rosły szybciej niż zakładano, a jeszcze za naszego życia niektóre regiony doświadczą średniego wzrostu temperatury przekraczającego 3 stopnie Celsjusza.
      Autorzy badań stwierdzili, że w 34 ze zdefiniowanych przez IPCC 43 regionów lądowych Ziemi średni wzrost temperatury przekroczy 1,5 stopnia Celsjusza do roku 2040. W 31 z tych 34 regionów należy spodziewać się wzrostu o 2 stopnie do roku 2040. Natomiast do roku 2060 w 26 regionach średnia temperatura wzrośnie o ponad 3 stopnie.
      Regionami narażonymi na szybszy niż przeciętny wzrost temperatur są południowa Azja, region Morza Śródziemnego, Europa Środkowa i niektóre części Afryki Subsaharyjskiej.
      Profesor Diffenbaugh zauważył, że ważne jest, by nie skupiać się tylko na temperaturach globalnych, ale zwracać uwagę na temperatury lokalne i regionalne. Badając, jak rośnie temperatura w poszczególnych regionach, będziemy mogli określić, kiedy i jakie skutki będą odczuwalne dla społeczności i ekosystemów tam żyjących. Problem w tym, że regionalne zmiany klimatyczne są trudniejsze do przewidzenia. Dzieje się tak dlatego, że zjawiska klimatyczne są bardziej chaotyczne w mniejszej skali oraz dlatego, że trudno powiedzieć, jak dany obszar będzie reagował na ocieplenie w skali całej planety.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      „Ala ma kota” to pierwsze i – prawdę mówiąc – jedyne zdanie, jakie pamiętam z elementarza. I właśnie to zdanie, które kolejne pokolenia poznają dzięki legendarnemu „Elementarzowi” Falskiego prowadzi nas przez „Prosto o AI. Jak działa i myśli sztuczna inteligencja” autorstwa Roberta Trypuza. Niewielki format książeczki sugeruje, że znajdziemy w niej niezbyt wiele informacji. Nic bardziej mylnego. To elementarz, skoncentrowana skarbnica wiedzy o technologii, która już teraz w znaczącym stopniu zmienia ludzkie życie.
      Robert Trypuz jest praktykiem. To specjalista w dziedzinie Semnatic Web i inżynierii danych. Doktorat z informatyki i telekomunikacji uzyskał na Uniwersytecie w Trydencie, jest też doktorem habilitowanym filozofii z KUL. I, co widać w książce, jest entuzjastą sztucznej inteligencji, o której potrafi bardzo ciekawie pisać.
      Z „Prosto o AI” dowiemy się na przykład jak wygląda programowanie AI w porównaniu z programowaniem klasycznym, jak AI rozumie tekst, czym jest osadzanie słów oraz jakie rewolucyjne podejście pozwoliło na skonstruowanie dużych modeli językowych, w tym najbardziej znanego z nich ChataGPT. Przeczytamy o sieciach konwolucyjnych w medycynie, uczeniu ze wzmacnianiem, autor – pamiętajmy, że jest również filozofem – opisuje, czym jest sztuczna wolna wola, zatem czy AI ma wolną wolę.
      W ostatnim zaś odcinku znajdziemy rozważania na temat wpływu sztucznej inteligencji na proces edukacji. Nie ma w tym zdaniu pomyłki, odcinku, a nie rozdziale. Historia jest mianowicie taka, że treści zawarte w tej książce nie zostały napisane do tej książki. Pisałem je jako scenariusze odcinków programu, który nigdy nie powstał, pisze Robert Trypuz we wstępie. I może właśnie pochodzenie tekstu, który zamienił się w książkę, powoduje, że tak łatwo można przyswoić zawarte w niej informacje.
      Dla kogo jest zatem „Prosto o AI”? Dla każdego z nas, kto nigdy bardziej nie zagłębił się w tajniki sztucznej inteligencji. Tutaj znajdzie jej podstawy wyjaśnione w prosty sposób. Większości czytelników pogłębienie wiedzy do tego stopnia w zupełności wystarczy, jakąś zaś część zachęci, by sięgnąć po kolejne, bardziej szczegółowe i specjalistyczne pozycje. Ja czytałem książkę Trypuza z olbrzymim zainteresowaniem i przyjemnością.
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...