Sign in to follow this
Followers
0
Uran, roztopiony ołów, palnik alkoholowy – nietypowe zabawki sprzed kilkudziesięciu lat
By
KopalniaWiedzy.pl, in Ciekawostki
-
Similar Content
-
By KopalniaWiedzy.pl
Układ Słoneczny jest pełen fascynujących obiektów, które mogą być celem misji naukowych. Jednak budżet NASA – mimo że imponujący – nie jest z gumy, więc Agencja musi starannie określać priorytety swoich działań. Pomaga jej w tym tzw. przegląd dekady (decadal survey), nadzorowany przez Narodowe Akademie Nauk, Inżynierii i Medycyny. W jego ramach, raz na 10 lat, NASA prosi społeczność naukową o ocenę aktualnego stanu wiedzy i określenie obszarów, których zbadanie powinno być priorytetem.
Właśnie ukazał się raport z najnowszego przeglądu dekady. Określa on przyszłe kierunki rozwoju astrobiologii, planetologii i obrony planetarnej. To rekomendowane portfolio misji, priorytetowych badań naukowych oraz technologii, które należy rozwijać. Realizacja tych zaleceń powiększy naszą wiedzę o powstaniu i ewolucji Układu Słonecznego oraz możliwości występowania życia i warunków do jego podtrzymania na innych obiektach niż Ziemia, mówi Robin Canup z Southwest Research Institute, który jest współprzewodniczącym komitetu organizującego przegląd.
Jednym z zadań przeglądu jest określenie największych misji NASA, misji flagowych. Obecnie agencja prowadzi dwie takie misje, które zostały zaproponowane w poprzednim decadal survey. To warta 2,7 miliarda USD misja łazika Perseverance, który w ubiegłym roku wylądował na Marsie oraz misja Europa Clipper, która ma wystartować w roku 2024, a której budżet wynosi 4,25 miliarda dolarów. To misja orbitera, który będzie krążył wokół Jowisza i zbada też jego księżyc – Europę.
W ramach najnowszego przeglądu dokonano analizy sześciu potencjalnych misji flagowych. Wśród propozycji znalazło się zarówno lądowanie na Merkurym, jak i przygotowanie misji badawczej do Neptuna i jego największego księżyca, Trytona. Komitet dokonujący oceny propozycji uznał, ze priorytetową powinna być misja do Urana, które koszt oszacowano na 4 miliardy dolarów.
Specjaliści uznali, że misja, w ramach której do Urana miałby polecieć zarówno orbiter jak i próbnik, ma największy potencjał naukowy oraz największe szanse na powodzenie. Misja taka miałaby wystartować w roku 2031 lub 2032, a do Urana dotarłaby 13 lat później. Następnie przez kilkanaście lat pojazd pozostałby na orbicie Urana, badając jego atmosferę, pierścienie, wnętrze i księżyce. Uran to jeden z najbardziej interesujących obiektów Układu Słonecznego, napisali członkowie komitetu. Zaznaczyli, że zrealizowanie misji do któregoś z lodowych olbrzymów – Urana lub Neptuna – jest absolutnym priorytetem, ale przygotowanie w ciągu najbliższej dekady misji do Neptuna byłoby zbyt dużym wyzwaniem.
Jeśli zaś NASA otrzyma odpowiednie finansowanie, mogłaby zorganizować kolejną misję flagową. Komitet zarekomendował misję Enceladus Orbilander. Zakłada ona zbudowanie pojazdu, który udałby się do księżyca Saturna, Enceladusa. Przez 1,5 roku badałby go z orbity, a następnie by wylądował i przez kolejne 2 lat prowadził badania na jego powierzchni. Koszt takiej misji oszacowano na 5 miliardów dolarów.
Poza misjami flagowymi, pojawiły się też inne propozycje. Jako, że od czasu ostatniego przeglądu dekady liczba odkrytych egzoplanet zwiększyła się kilkukrotnie, specjaliści zaproponowali trzy szerokie pola badawcze w dziedzinie planetologii. Eksperci chcą, by NASA zajęła się 1. pochodzeniem układów planetarnych podobnych do naszego oraz zbadaniem, na ile są one rozpowszechnione we wszechświecie, 2. ewolucją planet oraz 3. warunkami koniecznymi do powstania planet zdolnych do podtrzymania życia i jego pojawienia się na Ziemi oraz jego poszukiwania poza Ziemią. Próby odpowiedzi na te pytania mogą zaś być związane ze zorganizowaniem mniejszych misji niż te flagowe. Może być to np. zbudowanie sieci czujników geofizycznych na Księżycu, pobranie i przywiezienie na Ziemię próbek z komety lub planety karłowatej Ceres czy wysłanie pojazdów badawczych w kierunku Saturna czy jego księżyców.
Twórcy przeglądu dużą uwagę przywiązali też do coraz bardziej rozszerzającego się pola badawczego związanego z obroną Ziemi przed zagrożeniami z przestrzeni kosmicznej. Już w tej chwili NASA kataloguje i śledzi olbrzymią liczbę obiektów bliskich Ziemi (NEO – Near-Earth Objects), a w ubiegłym roku wystartowała pierwsza misja, której celem jest przetestowanie technologii obrony Ziemi przed asteroidami (DART). Uruchomiono też nowoczesne narzędzie do oceny ryzyka uderzeń asteroid w Ziemię i trwają prace nad pojazdem NEO Surveyor, który będzie identyfikował obiekty mogące zagrozić naszej planecie.
W decadal survey wezwano NASA, by w 2029 roku, kiedy w pobliże Ziemi przyleci duża asteroida Apophis, Agencja przeprowadziła badania pod kątem obrony planetarnej. Autorzy przeglądu uważają również, że po misjach DART i NEO priorytetem NASA powinno być opracowanie pojazdu, który mógłby w trybie pilnym udać się do zagrażającej Ziemi asteroidy, by lepiej ocenić stwarzane przez nią ryzyko.
« powrót do artykułu -
By KopalniaWiedzy.pl
Tegoroczną Nagrodą Nobla z chemii podzielą się Benjamin List z Niemiec i David MacMillan z USA, zdecydowała Szwedzka Królewska Akademia Nauk. Nagrodę przyznano za rozwój asymetrycznej katalizy organicznej. Prace Lista i MacMillana mają olbrzymi wpływ na tworzenie nowych leków, a przy okazji czynią procesy chemiczne bardziej przyjazne środowisku naturalnemu.
Bardzo wiele dziedzin nauki i obszarów działalności przemysłowej jest zależnych od możliwości tworzenia molekuł o pożądanych właściwościach. Takich, dzięki którym powstaną wytrzymałe materiały, w których będzie można przechowywać energię czy molekuł służących do walki z chorobami. Stworzenie takich cząsteczek wymaga użycia odpowiednich katalizatorów, substancji pozwalających kontrolować i przyspieszać reakcje chemiczne, ale które nie wchodzą w skład finalnego produktu tych reakcji. Katalizatory są wszechobecne. Mamy je też w naszych organizmach, gdzie katalizatorami są enzymy, biorące udział w wytwarzaniu związków chemicznych niezbędnych do życia.
Przez całe dziesięciolecia uważano, że katalizatorami mogą być jedynie metale lub enzymy. Jednak w 2000 roku dowiedzieliśmy się, że istnieje trzeci rodzaj katalizatorów, gdy Benjamin List i David MacMillan – niezależnie od siebie – odkryli proces asymetrycznej katalizy organicznej, który opiera się na niewielkich molekułach organicznych.
Ten pomysł na przeprowadzenie katalizy jest tak prosty i genialny, że aż rodzi się pytanie, dlaczego nikt nie wpadł na to wcześniej, powiedział Johan Åqvist, przewodniczący zespołu przyznającego Nagrodę Nobla z chemii.
Naukowcy przez dziesięciolecia mogli tylko z zazdrością patrzeć na możliwości enzymów, dzięki którym natura tworzy niezwykle złożone cząsteczki. Nauka jednak powoli szła do przodu i nasze możliwości również się zwiększały. Na przełomie wieków, dzięki Listowi i MacMillanowi nasze zdolności w tym zakresie znacząco się zwiększyły. Obaj uczeni przenieśli możliwości tworzenia molekuł na całkowicie nowy poziom. Opracowali proce, który nie tylko jest mniej szkodliwy dla środowiska, ale przede wszystkim znacząco zwiększa możliwości tworzenie molekuł asymetrycznych.
Chemicy przez długie lata mieli problem z tym, że wiele molekuł występuje w dwóch postaciach – odbić lustrzanych, które jednak nie są identyczne. Są obiektami chiralnymi, o różnych właściwościach. Za przykład może tutaj posłużyć limonen, cząsteczka odpowiadająca za zapach cytryny, której lustrzane odbicie daje zapach pomarańczy. Problem w tym, że zwykle potrzebujemy konkretnej wersji danej molekuły. Jest to wyjątkowo ważne przy produkcji leków. A gdy w procesie katalizy powstaną obie wersje, trzeba te wymieszane bliźniaczo podobne molekuły zidentyfikować i od siebie oddzielić, co nie jest łatwym zadaniem.
W XIX wieku chemicy zauważyli niezwykłe zjawisko. Na przykład gdy do nadtlenku wodoru (H202) dodali srebra, dochodziło do pojawienia się wody (H2O) i tlenu (O2), jednak wydawało się, że cała ta reakcja nie miała żadnego wpływu na srebro. W 1835 roku szwedzki chemik Jacob Berzelius opisał taki proces na kilkunastu różnych przykładach i nazwał to zjawisko katalizą.
Z czasem odkryto olbrzymią liczbę katalizatorów, dzięki którym można było łączyć lub rozdzielać molekuły. Proces katalizy zaczęto wykorzystywać tak powszechnie, że obecnie około 35% światowego PKB w jakiś sposób jest z nim związane. Jednak przed rokiem 2000 wszystkie znane katalizatory były albo metalami albo enzymami. Metale są świetnymi katalizatorami, ale mają poważną wadę – są bardzo wrażliwe na działanie tlenu i wody. Zatem do pracy często potrzebują beztlenowego suchego środowiska, a jego uzyskanie w wielkoskalowych procesach przemysłowych jest bardzo trudne. Ponadto wiele świetnych katalizatorów to szkodliwe dla środowiska i człowieka metale ciężkie.
Drugim z rodzajów katalizatorów są enzymy. Jako, że są niezwykle wydajne, w latach 90. ubiegłego wieku prowadzono intensywne prace nad stworzeniem nowych enzymów do katalizy. Prace takie trwały też w Scripps Research Institute, w którym pracował Benjamin List.
Naukowiec obserwując sposób działania enzymów zwrócił uwagę na fakt, że mimo iż często zawierają one metale, to wiele enzymów katalizuje procesy chemiczne bez pomocy metali. Wykorzystują jedynie aminokwasy. List zaczął więc się zastanawiać, czy aminokwasy te muszą być częścią enzymów, by prowadzić katalizę czy też mogą działać samodzielnie lub będąc częścią jakiejś prostszej cząstki.
Naukowiec wiedział, że latach 70. prowadzono prace nad wykorzystaniem aminokwasu o nazwie prolina w procesie katalizy, ale je zarzucono. List przypuszczał, że stało się tak, gdyż pomysł nie wypalił. Mimo to, postanowił spróbować. Przeprowadził test, by sprawdzić, czy prolina może być katalizatorem reakcji aldolowej, w której atomy węgla z dwóch różnych molekuł łączą się ze sobą. Ku jego zdumieniu aminokwas świetnie się w tej roli sprawdził. W trakcie kolejnych eksperymentów List wykazał, że prolina nie tylko jest wydajnym katalizatorem, ale również może być wykorzystana w katalizie asymetrycznej, w trakcie której znacznie częściej powstaje tylko jedno z dwóch odbić lustrzanych molekuły. W porównaniu z metalami i enzymami prolina ma wiele zalet. Jest prostą, tanią i przyjazną środowisku molekułą. Naukowiec przygotował artykuł, który zaakceptowano do publikacji. Miał się on ukazać w lutym 2000 roku.
Jednak List nie był jedynym, który w tym czasie pracował nad takim rozwiązaniem.
David MacMillan pracował na Uniwersytecie Harvarda z metalami w roli katalizatorów. O ile w laboratorium łatwo jest o dobre warunki do pracy takich katalizatorów, to w przemyśle jest to bardzo trudne. Dlatego gdy przeniósł się z Harvarda na Uniwersytet Kalifornijski w Berkeley zarzucił prace nad metalami i zaczął projektować proste molekuły organiczne, które – podobnie jak metale – miały uwalniać lub więzić elektrony. Wybrał kilka molekuł i testował je w roli katalizatorów reakcji Dielsa-Aldera, której produktem jest węglowodór cykliczny.
Okazało się, że wykorzystane molekuły bardzo dobrze się sprawują, a niektóre z nich świetnie sobie radzą w reakcjach asymetrycznych. W wyniku ich pracy w ponad 90% przypadków powstawała tylko jedna z dwóch wersji poszukiwanej cząsteczki. W styczniu 2000 roku, na miesiąc przed ukazaniem się artykułu z wynikami pracy Lista, uczony przesłał do czasopisma naukowego swój własny artykuł. Nazwał w nim zaobserwowane przez siebie zjawisko katalizą organiczną.
Od 2000 roku prace nad katalizą organiczną ruszyły z kopyta. W procesie tym nie tylko wykorzystuje się proste łatwe do uzyskania molekuły, ale w niektórych przypadkach cząsteczki te, podobnie jak enzymy, potrafią działać w systemie „pracy ciągłej”. Wcześniej konieczne było po każdym etapie procesu chemicznego wyizolowanie i oczyszczenie produktu przejściowego, w przeciwnym razie na końcu całego procesu uzyskiwano zbyt dużo produktu ubocznego. Dzięki katalizie organicznej często można przeprowadzić wiele kroków procesu produkcyjnego jednym ciągiem. Dzięki takiej reakcji kaskadowej znacząco zmniejsza się liczba odpadów w przemyśle chemicznym.
Przykładem, jak bardzo wynalazek Lista i MacMillana zrewolucjonizował produkcję chemiczną niech będzie strychnina. Gdy w 1952 roku została po raz pierwszy zsyntetyzowana, konieczne było użycie 29 różnych reakcji chemicznych, jedynie 0,00009% oryginalnego materiału utworzyło strychninę. Reszta się zmarnowała. W 2011 roku dzięki katalizie organicznej produkcję strychniny uproszczono do 12 kroków, a sam proces był 7000 razy bardziej wydajny.
Benjamin List urodził się w 1968 roku we Frankfurcie nad Menem w Niemczech. prace doktorską obronił na Uniwersytecie Goethego. Obecnie jest profesorem na Uniwersytecie w Kolonii i dyrektorem Instytutu Badań nad Węglem im. Maxa Plancka. Jest też głównym badacze w Instytucie Projektowania Reakcji Chemicznych na Hokkaido University.
David MacMillan urodził się w 1968 roku w Bellshill w Szkocji. W wieku 22 lat wyjechał do USA by rozpocząć studia doktoranckie na Uniwersytecie Kalifornijskim w Irvine. Później pracował na Uniwersytecie Harvarda i Uniwersytecie Kalifornijskim w Berkeley. Obecnie jest pracownikiem Princeton University. Był też założycielem i pierwszym dyrektorem pisma Chemical Science, wydawanego przez brytyjskie Royal Society of Chemistry.
« powrót do artykułu -
By KopalniaWiedzy.pl
Rozgwieżdżone niebo od stuleci intryguje i fascynuje. Nie sposób nie rozważać jakie tajemnice skrywają te bliskie, lecz jeszcze niezbadane, jak i odległe zakątki kosmosu. Gwiazdy rodzą się z gazu i pyłu, rozproszonego tak bardzo, że mijają dni, a nawet tygodnie zanim poszczególne atomy lub cząsteczki zderzą się ze sobą. Ze względu na ogromne rozrzedzenie gazu, obecność promieniowania i niskie temperatury panujące w przestrzeniach międzygwiazdowych, znajdujące się tam związki chemiczne mogą być inne od tych, które są nam dobrze znane na Ziemi. Najnowsze badania naukowców z Instytutu Chemii Fizycznej Polskiej Akademii Nauk dotyczą nietypowych, wręcz egzotycznych molekuł, które zdają się być ciekawe z punktu widzenia astrochemii i być może uda się je kiedyś uchwycić w kosmosie.
Przestrzenie międzygwiazdowe
Przestrzeń pomiędzy gwiazdami nie jest pusta. Znajdujemy tam głównie (ale nie tylko!) wodór, hel i kosmiczny pył. Muszą minąć miliony lat zanim obłoki tej materii przekształcą się w zarodek gwiazdy i zaświecą przynajmniej tak jasno jak nasze rodzime Słońce. Chemii zachodzącej w obłokach międzygwiazdowych sprzyja promieniowanie, a czasem także wybuchy pobliskich, ginących gwiazd, a są to warunki na tyle drastyczne, że próżno je symulować w laboratorium. To jednak nie przeszkadza w poszukiwaniu związków chemicznych, które samoistnie nie powstałyby na Ziemi, lecz być może kiedyś zostaną odkryte w Kosmosie.
Chemiczna różnorodność w kosmosie
Nasz punkt obserwacyjny to tylko niewielka planeta w morzu galaktyk. Do dziś nie do końca rozgryźliśmy reaktywność atomów i cząsteczek w ekstremalnych warunkach. Od kilku dekad Jowisz i Saturn przykuwają uwagę ze względu na odkrycie w ich atmosferze analogu amoniaku zawierającego fosfor – fosfiny, a w roku 2020 do grona równie intrygujących posiadaczy tej cząsteczki przypuszczalnie dołączyła także Wenus. Dlaczego tak wielkie znaczenie ma poszukiwanie związków fosforu w kosmosie? Bez niego nie byłoby DNA i RNA, procesów enzymatycznych, czy hydroksyapatytu będącego naturalnym budulcem naszych kości. Choć w biomasie pierwiastek ten jest szósty pod względem występowania, a w skorupie ziemskiej dwunasty, to w obłokach międzygwiazdowych jest go nawet miliard razy mniej. O związkach fosforu w przestrzeni międzygwiazdowej wiemy ciągle niewiele; wykryto dotychczas jedynie niewielkie molekuły posiadające do czterech atomów, tj. PN, CP, PO, HCP, CCP, PH3 i NCCP. Większość z nich jest nietrwała w standardowych warunkach laboratoryjnych.
Podążając śladami chemii fosforu, profesor Robert Kołos, członkowie jego zespołu dr Arun-Libertsen Lawzer i dr Thomas Custer oraz współpracujący z nimi profesor Jean-Claude Guillemin z Ecole Nationale Supérieure de Chimie de Rennes (Francja) zaprezentowali w grudniowym numerze periodyku Angewandte Chemie wydajną syntezę cząsteczki HCCP, indukowaną światłem ultrafioletowym i prowadzoną w warunkach kriogenicznych.
Cząsteczkę odpowiedniego prekursora – tutaj jest to fosfapropyn, CH3CP – naświetlamy ultrafioletem, stopniowo odzierając ją z atomów wodoru. Tak powstaje HCCP, czteroatomowy dziwoląg. Sztuczka polega na wykorzystaniu zamarzniętego gazu szlachetnego jako środowiska reakcji – mówi dr Lawzer.
Dotychczas identyfikacja cząsteczki HCCP była możliwa wyłącznie w zakresie mikrofalowym, a teraz poszerzono wiedzę na jej temat podając długości fal z zakresu podczerwonego i ultrafioletowego.
Profesor Kołos komentuje: Niektórzy mogą ze szkoły pamiętać, że fosfor jest w związkach chemicznych trój- lub pięciowartościowy. Otóż w HCCP jest on jednowartościowy – realizując pojedyncze wiązanie do sąsiadującego węgla. To bardzo niezwykłe.
Niezależnie od produktu końcowego - HCCP, naukowcy zaobserwowali nie mniej ważny produkt pośredni, potwierdzając istnienie cząsteczki fosfaallenu, CH2=C=PH. Nigdy dotąd nie była ona uzyskana w warunkach laboratoryjnych, a jedynie teoria wskazywała na możliwości jej tworzenia.
Wśród cząsteczek astrochemicznej menażerii, również najważniejszych, są takie, których typowy chemik raczej za „prawdziwe” by nie uznał – widząc w nich jedynie molekularne fragmenty lub nietrwałe osobliwości – przyznaje prof. Kołos.
Uchwycenie cząsteczki CH2=C=PH i poznanie jej spektroskopii jest istotne, gdyż, niezależnie od kontekstu astrochemicznego, poszerza ogólną wiedzę o chemii związków fosforoorganicznych.
Czy kiedyś odnajdziemy HCCP lub CH2=C=PH w kosmosie? Obłoki międzygwiazdowe to rezerwuar materii bez wątpienia kryjący jeszcze liczne związki fosforu. Niektóre z nich zapewne zostaną niebawem odkryte, a na inne przyjdzie nam dłużej poczekać.
« powrót do artykułu -
By KopalniaWiedzy.pl
Z badań przeprowadzonych przez szwajcarsko-duński zespół naukowy wynika, że pojazdy wysłane w przyszłej dekadzie w kierunku Urana i Neptuna mogą zostać wykorzystane do badania fal grawitacyjnych. Zdaniem naukowców, analiza sygnałów radiowych wysyłanych na Ziemię przez pojazdy znajdujące się w zewnętrznych obszarach Układu Słonecznego, pozwoli na analizowanie zaburzeń czasoprzestrzeni wywoływanych przez fale grawitacyjne.
Autorzy najnowszych badań twierdzą, że fale grawitacyjne wywołają w falach radiowych efekt Dopplera. Gdy fala grawitacyjna przechodzi przez sygnał radiowy, może go nieco zakłócić powodując przesunięcie częstotliwości. Możemy wykryć te niewielkie zakłócenia i z nich wnioskować o przechodzącej fali grawitacyjnej, mówi główny autor badań Deniz Soyuer z Uniwersytetu w Zurichu.
Pomysł Soyeura i jego zespołu nie jest oryginalny. Już wcześniej próbowano w ten sposób wykrywać w ten sposób fale grawitacyjne. Próbowała tego m.in. NASA, używając w tym celu sondy Horizon, znajdującej się obecnie w Pasie Kuipera. Dlaczego więc tym razem miałoby się udać? Naukowcy mówią, że chodzi o czas i cel misji.
Proponowane misje na Urana i Neptuna mogą zostać wystrzelone około roku 2030. Minie wiele lat, zanim dotrą do celu. W tym czasie będzie wiele okazji, by wykorzystać je do badania fal grawitacyjnych. W ciągu roku będzie jedno, trwające 6 do 8 tygodni, idealne okienko czasowe, kiedy pozycja Ziemi, Słońca i pojazdu będzie odpowiednia do tego typu obserwacji. Zatem w ciągu 10-letniej podróży będziemy mieli 10 takich okienek badawczych, wyjaśnia Soyuer.
Olbrzymią zaletą propozycji jest fakt, że sondy nie musiałyby zabierać ze sobą żadnego specjalnego sprzętu. Już teraz wszystkie misje są wyposażane w instrumenty badające efekt Dopplera, gdyż to właśnie dzięki nim możemy określać pozycję pojazdu w przestrzeni kosmicznej oraz dokonywać pomiarów oddziaływania grawitacyjnego planet. Podstawy proponowanych przez nas badań są bardzo proste, jednak same badania będą trudne, gdyż zmiany częstotliwości powodowane przez fale grawitacyjne są niezwykle małe dodaje Soyuer.
Dodatkowym problemem będzie odfiltrowanie szumów z sygnału. A jednym z największych źródeł takiego szumu jest szum mechaniczny generowane przez anteny odbiorcze na Ziemi. Naukowcy wierzą jednak, że w najbliższym czasie dokonamy na tyle dużego postępu technicznego, że odfiltrowanie szumu i rejestrowanie niewielkich zmian częstotliwości sygnału radiowego będzie możliwe, co pozwoli nam wykorzystać pojazdy lecące w kierunku Neptuna i Urana do badania fal grawitacyjnych generowanych np. przez czarne dziury o masie gwiazdowej krążące wokół supermasywnych czarnych dziur.
Jeśli takie badania udałoby się przeprowadzić, byłyby one świetnym uzupełnieniem naszej wiedzy. Obecnie wykrywamy fale grawitacyjne dzięki detektorom LIGO/Virgo. Kolejnym ważnym krokiem w kierunku badań fal grawitacyjnych ma być misja LISA (Laser Interferometer Space Antenna), czyli planowane przez ESA na rok 2034 umieszczenie w przestrzeni kosmicznej trzech pojazdów wykrywających fale grawitacyjne.
« powrót do artykułu -
By KopalniaWiedzy.pl
Przechwytywanie aerodynamiczne (aerocapture) to wciąż opracowywana metoda umieszczania pojazdów na orbicie innych planet i księżyców. Technika ta pozwoliłaby umieszczać na orbitach znacznie większe ładunki niż obecnie. To zaś oznacza olbrzymie oszczędności, gdyż zamiast dwóch lub trzech misji naukowych badających np. Jowisza, można by zorganizować jedną. Ten jeden pojazd mógłby bowiem zabrać na pokład znacznie więcej instrumentów naukowych niż obecnie.
Umieszczenie satelity na orbicie innej planety to niełatwe zadanie. Pędzący z olbrzymią prędkością pojazd trzeba bowiem wyhamować do odpowiedniej prędkości i umieścić go na orbicie. Najlepiej kołowej. Manewry takie wymagają zużycia olbrzymich ilości paliwa. A im pojazd cięższy, tym więcej paliwa potrzebuje. To poważny czynnik ograniczający masę sond, które obecnie wysyłamy, by badały Układ Słoneczny.
Przechwytywanie aerodynamiczne to pomysł, który polega na chwilowym wejściu pojazdu w atmosferę planety. W wyniku oddziaływania z atmosferą pojazd zwalnia, a gdy osiągnie odpowiednią prędkość, opuszcza atmosferę i trafia na orbitę planety. Tego typu manewr wymagałby znacznie mniej paliwa niż obecnie używane techniki spowalniania sond kosmicznych.
Już wcześniejsze wyliczenia dla ośmiu potencjalnych misji planetarnych, w których dokonano bezpośredniego porównania pomiędzy przechwytywaniem aerodynamicznym a innymi zaawansowanymi technikami, takimi jak hamowanie atmosferyczne, wykorzystanie energii chemicznej lub słonecznej elektrycznej do spowolnienia pojazdu, wykazały jak olbrzymie korzyści niesie ze sobą nowa technika.
Porównanie wykazało, że przechwytywanie atmosferyczne umożliwia umieszczenie pojazdu na orbicie eliptycznej wokół Neptuna i na orbitach kołowych Jowisza i Saturna. Ponadto w przypadku pięciu innych misji pozwala na umieszczenie na orbicie ładunku o znacznie większej masie bez zwiększania kosztów misji. I tak pojazd na orbicie kołowej wokół Wenus mógłby mieć o 79% większą masę, niż gdy do wyhamowania użyje się innych technik. Jeśli byśmy chcieli umieścić ten pojazd na orbicie eliptycznej, to jego masa mogłaby być o 43% większa. Dla orbity kołowej Marsa możemy zwiększyć masę pojazdu o 15%, dla orbity kołowej wokół Tytana jego masa może być większa o 280%, a jeśli chcielibyśmy wysłać sondę na orbitę eliptyczną Urana, to może on mieć masę o 218% większa, niż w przypadku innych technik.
Dotychczasowe badania wykazały też, że na przykład wykorzystanie przechwytywania atmosferycznego dla misji na Neptuna wymaga budowy pojazdu o doskonałości aerodynamicznej między 0,6 a 0,8. Obecnie stosowane nosy pojazdów wchodzących w atmosferę innych planet mają doskonałość aerodynamiczną rzędu około 0,25. Badania sprzed kilkunastu lat dowiodły, że w takim przypadku wykorzystanie przechwytywania atmosferycznego wymagałoby stosowania olbrzymich osłon termicznych na niemal całym pojeździe, a i tak pojazd uległby zniszczeniu. Najnowsze osłony termiczne również nie zdałyby egzaminu.
Zespół Roberta Mosesa z Langley Research Center informuje, że właśnie rozwiązał zarówno problem doskonałości aerodynamicznej jak i osłon termicznych. Naukowcy proponują umieszczenie w pojeździe magnesów. Pole magnetyczne tych, znajdujących się blisko czubka nosa pojazdu znacząco odsunie miejsce powstawania fali uderzeniowej, znacząco zmniejszając przepływ ciepła, dzięki czemu nie trzeba będzie stosować olbrzymich osłon termicznych. Z kolei magnesy umieszczone na bokach nosa zwiększą siłę nośną, a przez to i doskonałość aerodynamiczną.
Moses twierdzi, że taki system można wykorzystać nie tylko do umieszczania pojazdów na orbicie, ale również i w pojazdach, które mają lądować. Dzięki temu zaś misja załogowa mogłaby dotrzeć do Marsa w ciągu 39 dni, a nie – jak się obecnie prognozuje – w ciągu 100 lub więcej dni.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.