-
Similar Content
-
By KopalniaWiedzy.pl
Nowo odkryta planeta wielkości Neptuna ma gęstość większą od stali. Masa TOI-1853b jest niemal dwukrotnie większa niż planet jej rozmiarów. To zaś oznacza, że musi składać się ze znacznie większego odsetka skał, niż można by się spodziewać. Dlatego naukowcy z Włoch i Wielkiej Brytanii uważają, że planeta powstała w wyniku zderzenia innych planet.
Jak czytamy na łamach Nature, zderzenie odrzuciło lżejszy materiał, jak woda i atmosfera, pozostawiając planetę złożoną w olbrzymiej mierze ze skał. W naszym Układzie Słonecznym mamy dowody na potężne kolizje między planetami. Dowodem takim jest istnienie Księżyca. Dysponujemy też dowodami na zderzenia pomiędzy mniejszymi egzoplanetami. Wiemy, że egzoplanety są niezwykle zróżnicowane. Wiele z nich nie ma odpowiedników w Układzie Słonecznym, ale często te skaliste ciała niebieskie mają podobną masę i skład do naszych lodowych olbrzymów, Neptuna i Urana, mówi doktor Phil Carter z University of Bristol.
Naukowcy przeprowadzili symulacje komputerowe, które miały pokazać, w jaki sposób mogła powstać planeta taka jak TOI-1853b. Stwierdzili, że planety, które dały jej początek, prawdopodobnie były bogate w wodę. Musiały zderzyć się z prędkością większą niż 75 km/s, by powstała planeta o takich parametrach jak TOI-1853b, dodaje Carter.
Odkrycie potwierdza rolę zderzeń w powstawaniu planet. Zdobyta dzięki niemu wiedza pozwala łączyć to, co wiemy o ewolucji Układu Słonecznego z ewolucją innych systemów planetarnych. To niezwykle zaskakująca planeta. Zwykle planety zawierające tak dużo skał powinny tworzyć gazowe olbrzymy, jak Jowisz, którego gęstość jest podobna do gęstości wody. Tymczasem TOI-1853b ma rozmiary Neptuna, ale jest gęstsza niż stal. Wykazaliśmy, że taka planeta może powstać, jeśli doszło do wysokoenergetycznych zderzeń innych planet, podsumowuje Jingyao Dou z Bristolu.
Teraz badacze chcą jeszcze dokładniej przyjrzeć się TOI-1853b, spróbować dokładnie określić jej skład i poszukać ewentualnych resztek atmosfery.
« powrót do artykułu -
By KopalniaWiedzy.pl
Fale grawitacyjne zdradzają niektóre właściwości czarnych dziur, przez które zostały wygenerowane, takie jak ich masa czy odległość od Ziemi. Jednak para brytyjskich fizyków twierdzi, że dzięki nim można dowiedzieć się znacznie więcej o czarnych dziurach. Zdaniem Louisa Hamaide i Theo Torresa z King's College London, fale grawitacyjne mogą zdradzić nam informacje o materii wchłoniętej przez czarne dziury.
Jak wiemy, wszystko, co przekroczy horyzont czarnej dziury, zostaje przez niż wchłonięte. Z dziur nie wydobywa się nawet światło, dlatego tak trudno je badać. Jednak w 1974 roku Stephen Hawking zaproponował istnienie promieniowania wydobywającego się z czarnej dziury. Jedną nielosową cechą tego tzw. promieniowania Hawkinga, jest energia emitowanych fotonów, która zależna jest od masy dziury. Istnienie promieniowania Hawkinga prowadzi do paradoksu. Polega ona na bezpowrotnej utracie informacji o obiektach, które kiedyś zostały wchłonięte przez czarną dziurę. To sprzeczne z zasadami mechaniki kwantowej, które mówią, że informacja nie może ulec zniszczeniu i całkowicie zniknąć z wszechświata.
Hamaide i Torres przeprowadzili obliczenia dla czarnej dziury Schwarzschilda, czyli statycznej czarnej dziury. Obiekt taki nie posiada ładunku ani pędu, a promień jej horyzontu zdarzeń jest wprost proporcjonalny do jej masy. Naukowcy wykorzystali przy tym teorię perturbacji, za pomocą której badali zmiany właściwości czarnej dziury w wyniku wchłonięcia przez nią obiektu.
Z obliczeń wynika, że sygnatura pozostawiona przez obiekt wpadający do czarnej dziury jest niezwykle prosta. Z częstotliwości fal grawitacyjnych możemy poznać masę czarnej dziury, a ich amplituda zawiera informacje o masach obiektów, które do niej wpadły. Czas wpadnięcia do czarnej dziury jest zaś zapisany w fazie amplitudy, a informacje o kącie, pod jakim cząstki wpadły zawarte są w kątach fazowych sygnału fali grawitacyjnej, stwierdzają badacze na łamach Classical and Quantum Gravity.
Wielu specjalistów sceptycznie podchodzi do twierdzeń naukowców z King's College. Zwracają oni uwagę, że czarna dziura jest układem kwantowym, tymczasem Hamaide i Torres wykonali analizy klasyczne. Autorzy pracy przyznają, że sygnatury są klasyczne, a opis całego obiektu powinien być kwantowy, na podstawie funkcji falowej. Z ich obliczeń wynika, że klasyczna informacja będzie stanowiła ponad 99,9% całości, jednak nigdy nie osiągnie 100%, dlatego też w ten sposób nie uda się uzyskać pełnych informacji o czarnej dziurze. Sceptycy zwracają też uwagę, że nie w każdym przypadku można będzie dokonać pomiaru klasycznej informacji i pytają, czy w ogóle takie pomiary są możliwe. Do ich przeprowadzenia bowiem konieczne byłoby uzyskanie danych z wielu niezwykle czułych detektorów otaczających czarną dziurę. Samo więc praktyczne zastosowanie obliczeń stoi pod olbrzymim znakiem zapytania, tym bardziej, że współczesne wykrywacze fal grawitacyjnych i tak mają problemy z precyzyjnym określeniem masy i spinu czarnych dziur. I w przyszłości się to nie zmieni.
Autorzy badań zgadzają się z takim stanowiskiem. Dodają jednak, że ich praca pokazuje, iż w miarę jak przyszłe detektory fal grawitacyjnych będą coraz bardziej czułe, to uzyskanie z nich konkretnych informacji na temat właściwości czarnej dziury będzie łatwiejsze, a nie – jak się często uważa – trudniejsze.
« powrót do artykułu -
By KopalniaWiedzy.pl
Nie możemy bezpośrednio obserwować wczesnego wszechświata, ale być może będziemy w stanie obserwować go pośrednio, badając, w jaki sposób fale grawitacyjne z tamtej epoki wpłynęły na materię i promieniowanie, które obecnie widzimy, mówi Deepen Garg, student z Princeton Plama Physics Laboratory. Garg i jego promotor Ilya Dodin zaadaptowali do badań wszechświata technikę ze swoich badań nad fuzją jądrową.
Naukowcy badali, w jaki sposób fale elektromagnetyczne rozprzestrzeniają się przez plazmę obecną w reaktorach fuzyjnych. Okazało się, że proces ten bardzo przypomina sposób rozprzestrzeniania się fal grawitacyjnych. Postanowili więc wykorzystać te podobieństwa.
Fale grawitacyjne, przewidziane przez Alberta Einsteina w 1916 roku, zostały wykryte w 2015 roku przez obserwatorium LIGO. To zaburzenia czasoprzestrzeni wywołane ruchem bardzo gęstych obiektów. Fale te przemieszczają się z prędkością światła.
Garg i Dodin, wykorzystując swoje spostrzeżenia z badań nad falą elektromagnetyczną w plazmie, opracowali wzory za pomocą których – jak mają nadzieję – uda się odczytać właściwości odległych gwiazd. W falach grawitacyjnych mogą być „zapisane” np. o gęstości materii, przez którą przeszły. Być może nawet uda się w ten sposób zdobyć dodatkowe informacje o zderzeniach gwiazd neutronowych i czarnych dziur.
To miał być prosty, krótki, sześciomiesięczny program badawczy dla mojego studenta. Gdy jednak zaczęliśmy zagłębiać się w problem, okazało się, że niewiele o nim wiadomo i można na tym przykładzie wykonać pewne podstawowe prace teoretyczne, przyznaje Dodin.
Naukowcy chcą w niedługiej przyszłości wykorzystać swoje wzory w praktyce. Zastrzegają, że uzyskanie znaczących wyników będzie wymagało sporo pracy.
« powrót do artykułu -
By KopalniaWiedzy.pl
Odnaleziono kolejny fragment barokowej fontanny z Neptunem, która niegdyś zdobiła plac Nowy Targ we Wrocławiu. Okazało się, że jedna z czterech muszli - trzymanych oryginalnie przez syreny i trytony - pełniła funkcję ozdoby w ogródku mieszkanki Wielowsi Średniej.
Jak podaje serwis Wroclaw.pl, na muszlę natrafiła dziennikarka Radia Wrocław. Przeprowadzała wywiad z mieszkańcami podsycowskiej miejscowości i to oni skierowali ją w konkretne miejsce.
Siedemnastego stycznia br. niemal kompletny element został przewieziony do Wrocławia.
Wratislavianista dr Tomasz Sielicki – który wpadł na trop fontanny – przypomina, że w zeszłym roku odnaleziono rzeźbę Neptuna [korpus z prawie całą lewą nogą; górna część sięga linii żuchwy], jedną z muszli, jedną ze ślimacznic, kapitel z resztkami delfinów, głowę delfina oraz dolną partię syreny bądź trytona.
Wiosną poszukiwania będą kontynuowane. Choć priorytetem jest odnalezienie głowy Neptuna, inne elementy są również na wagę złota, bo pomogą w ewentualnym odtworzeniu fontanny. Dr Sielicki szacuje, że dotąd odnaleziono ok. 50% całości.
Wszystkie zebrane części oddano w depozyt do Muzeum Miejskiego Wrocławia. W pracowni kamieniarskiej na Starym Cmentarzu Żydowskim czekają na stabilne dodatnie temperatury; wtedy zostaną oczyszczone.
Mówiąc o przyszłości, dr Sielicki wspomina o 2 ewentualnych scenariuszach. Pozostałości fontanny można by gdzieś wyeksponować albo, co wymagałoby większych środków pieniężnych, pokusić się o odtworzenie zabytku. Wratislavianista uważa, że da się to zrobić dzięki wykorzystaniu odnalezionych elementów i odkuciu nowych na wzór historycznych. Sprawa dalszych losów zabytku pozostaje otwarta.
« powrót do artykułu -
By KopalniaWiedzy.pl
Współcześni rodzice mają do wyboru olbrzymią liczbę zabawek dla swoich pociech. Pomysłowość producentów nie zna granic i wybór odpowiedniego prezentu często nie jest łatwym zadaniem. Mimo tej różnorodności dzisiaj nie uświadczymy wielu zabawek, które można było znaleźć na sklepowych półkach – oczywiście po drugiej stronie Żelaznej Kurtyny – jeszcze kilkadziesiąt lat temu. I nie dlatego, że zabawki te nie cieszyły się popularnością czy wyszły z mody, a dlatego, że zostały zakazane. Oto trzy przykłady najciekawszych naszym zdaniem zabawek, z którymi współczesne dzieci nie mają już do czynienia.
Atomowe fascynacje
W 1950 roku na rynek trafiła zabawka Gilbert U-238 Atomic Energy Lab, w której znajdowały się rudy uranu. Dzieci mogły dokonywać pomiaru radioaktywności próbek, obserwować rozpad promieniotwórczy czy poszukać radioaktywnych miejsc w swoim otoczeniu. W instrukcji napisano, by nie wyjmować próbek z pojemników, gdyż mają tendencję do kruszenia się. Nie chodziło tu jednak o kwestie związane z bezpieczeństwem, a z nauką. Wyjmowanie kruszących się próbek mogło doprowadzić do zanieczyszczenia nimi otoczenia i zwiększenia radioaktywności tła, co negatywnie wpłynęłoby na jakość pomiarów dokonywanych przez małych naukowców.
W zestawie zawarty był zresztą nie tylko uran, ale i źródła promieniowania beta-alfa, beta oraz gamma. Użytkownicy mieli do dyspozycji komorę Wilsona (urządzenie do wykrywania promieniowania poprzez obserwację śladów cząstek elementarnych), spintaryskop (najprostszy licznik scyntylacyjny, pozwala na obserwację rozpadu atomowego), elektroskop (służy do wykrywania napięcia elektrycznego) oraz licznik Geigera. Dołączono też 60-stronicową instrukcję użytkownika i przewodnik nt. wydobycia uranu. W każdym zestawie znajdowała się też książeczka „Learn How Dagwood Splits the Atom!”. Był to częściowo komiks, częściowo podręcznik, w którym bohaterowie popularnego wówczas komiksu – Blondie i Dagwood Bumstead oraz ich dzieci, pies i przyjaciele – wyjaśniali podstawy energetyki atomowej. Ich mentorem i opiekunem, który wyjaśniał przeprowadzane eksperymenty, był Mandrake the Magician, inny popularny bohater komiksów. Książki zostały przygotowane pod nadzorem Leslie'ego R. Grovesa (dyrektor Manhattan Project) oraz Johna R. Dunninga (fizyk, jedna z kluczowych postaci Manhattan Project).
Zabawka obecna była na rynku przez około rok. Sprzedano mniej niż 5000 zestawów. Problemem była zapewne wysoka cena – 49,50 USD – czyli około 500 dzisiejszych dolarów. W tym czasie firma Porter Chemical Company sprzedawała dwa inne zestawy dla dzieci, również zawierające rudę uranu, ale w cenie 10 i 25 USD.
Z czasem w USA pojawiały się przepisy, które stopniowo uniemożliwiły sprzedaż zabawek, który mogłyby stwarzać jakiekolwiek zagrożenie. Dawka promieniowania emitowana przez zestaw Gilbert U-238 była taka, jak dawka promieniowania, którą otrzymujemy codziennie ze Słońca. Musimy pamiętać też, że wiele otaczających nas przedmiotów jest radioaktywnych, na przykład banany czy orzechy brazylijskie. Mimo tego, obecnie sprzedaż takich zabawek jak opisywany zestaw jest niemożliwa.
Chemiczna kuźnia naukowców
Atomowe laboratorium nie było jedynym zestawem naukowym oferowanym dzieciom. Kilka dekad wcześniej na rynku pojawiły się zestawy „małego chemika”. Inspirowane były przenośnymi zestawami chemicznymi, które w XVIII i XIX wieku sprzedawano naukowcom i studentom chemii. Te „dorosłe” zestawy zawierały szklane naczynia, związki chemiczne, moździerze i inne przedmioty, niezbędne do prowadzenia badań z dziedziny medycyny, geologii czy nauczania studentów. I to na nich wzorowano zestawy dla dzieci.
Wiele z przenośnych zestawów chemicznych było produkowanych w Wielkiej Brytanii, ale same chemikalia pochodziły często z Niemiec. Pierwsza wojna światowa spowodowała, że przestały być one dostępne, produkcję przestawiono na potrzeby wojska. Jednak mniej więcej w tym samym czasie w USA bracia John J. i Harold Mitchell Porter założyli Porter Chemical Company i – inspirowani angielskimi „dorosłymi” zestawami oraz zdobywającą popularność zabawką „Erector set” – wczesnym „małym konstruktorem” – zaoferowali zestawy chemiczne dla dzieci. W zabawce Chemcraft znajdowały się związki chemiczne, wyposażenie laboratorium, waga i palnik alkoholowy. Ceny wahały się od 1,50 do 10 USD, w zależności od tego, jak bogate było wyposażenie zestawu.
Bardzo szybko swoją wersję „małego chemika” zaoferował twórca „Erector set” Alfred Carlton Gilbert. Przez kolejne dekady obie firmy konkurowały na rynku oferując coraz to nowe zestawy reklamowane w pismach naukowych i gazetach dla dzieci. Pojawiły się też wyspecjalizowane zestawy, jak przeznaczone dla dziewczynek Sachetcraft pozwalające na wykonywanie własnych perfum i innych kosmetyków czy Laboratory Technician zawierający mikroskop i gotowe preparaty, które można było pod nim obserwować.
Większość związków chemicznych znajdujących się w tych zestawach było nieszkodliwych, ale nie o wszystkich można to powiedzieć. Wczesne zestawy dla dzieci zawierały np. azotan potasu, kwas azotowy i siarkowy czy podchloryn wapnia. Dzieci mogły w domowym laboratorium przeprowadzać eksplozje, budować akumulatory czy zginać szkło nad palnikiem. Oczywiście do zestawów dołączone były szczegółowe instrukcje i zakładano, że odpowiedzialni rodzice poinstruują dzieci, jak bezpiecznie się bawić.
Jednak w latach 60. rodzice zaczęli wyrażać coraz więcej obaw odnośnie bezpieczeństwa takich zabawek. Pojawiły się więc kolejne regulacje prawne, które coraz bardziej ograniczały możliwości tego typu zabawek. Producenci zaczęli od usuwania z zestawów palników i kwasów, mieli obowiązek oznaczać substancje niebezpieczne, z zestawów zaczęły znikać różne metale. Media, które jeszcze niedawno szeroko informowały o pojawianiu się kolejnych zabawek, teraz zaczęły przed nimi ostrzegać. W końcu zestawy chemiczne dla dzieci całkowicie zniknęły. Dzisiaj na rynku można spotkać zestawy chemiczne dla dzieci reklamowane jako „wolne od środków chemicznych”.
Gdy miałem 9 lat rodzice dali mi małego chemika. Po tygodniu zdecydowałem, że chcę być chemikiem i tak już pozostało, pisał w swojej autobiografii laureat Nagrody Nobla z chemii Robert F. Curl. To jeden z wielu noblistów, którzy przyznają, że nauką zainteresowali się właśnie dzięki sprzedawanym przed dekadami zestawom dla dzieci.
Zrób sobie zabawkę
W latach 30. i na początku lat 40. w ofercie firmy AC Gilbert znajdował się Kaster Kit. Pomiędzy rokiem 1932 a 1941 pojawiło się kilka wersji tego zestawu. Służył on do produkcji własnych zabawek, a konkretne ołowianych figurek. W zestawie znajdowało się kilkadziesiąt form, zarówno płaskich jak i wypukłych, do których dziecko mogło wlać roztopiony ołów. W ten sposób powstawały ołowiane żołnierzyki, figurki sportowców, zwierząt, samolotów, samochodów i innych przedmiotów. Oczywiście nie mogło zabraknąć też elektrycznego tygla do roztapiania ołowiu. Po wlaniu ołowiu do formy wystarczyło poczekać, aż całość ostygnie. Następnie można było wyjąć figurkę z formy, obciąć nadmiarowy ołów i pomalować figurkę na dowolne kolory. Na filmie poniżej możecie zobaczyć, jak to działało.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.