-
Similar Content
-
By KopalniaWiedzy.pl
Po 2,5 roku pracy na dnie Krateru Jezero łazik Perseverance przygotowuje się do wielomiesięcznej wspinaczki na zachodnią krawędź Krateru. Prawdopodobnie napotka tam najbardziej stromy i najtrudniejszy teren, z jakim przyszło mu się dotychczas zmierzyć. Perseverance wyruszy w podróż 18 sierpnia, a wspinaczka i badanie terenu będą już 5. kampanią naukową prowadzoną od czasu lądowania 18 lutego 2021 roku.
Perseverance zakończył 4 projekty badawcze, zebrał 22 próbki skał i przejechał ponad 18 mil. Zaczynamy teraz Crater Rim Campaign. Łazik jest w doskonałym stanie, a my nie możemy się doczekać, by zobaczyć, co jest na szczycie badanego przez nas obszaru, mówi Art Thompson, menedżer projektu Perseverance w Jet Propulsion Laboratory.
Głównymi celami najnowszej kampanii badawczej są dwa miejsca, nazwane „Pico Turquino” oraz „Witch Hazel Hill”. Na zdjęciach z orbiterów krążących wokół Marsa widać, że na Pico Turquino znajdują się stare pęknięcia, które mogą powstać w wyniku zjawisk hydrotermalnych. Z kolei warstwy, z których zbudowane jest Witch Hazel Hill sugerują, że struktura ta powstała w czasach, gdy na Marsie panował zupełnie inny klimat niż obecnie. Zdjęcia ujawniły tam podłoże skalne o jaśniejszym kolorze, podobne do tego, które łazik znalazł na obszarze zwanym „Bright Angel”. Tamtejsza skała „Cheyava Falls” miała strukturę i sygnatury chemiczne wskazujące, że mogła powstać przed miliardami lat w wyniku działania organizmów żywych w środowisku wodnym.
Podczas podróży ku krawędzi krateru Perseverance będzie polegał na półautomatycznych mechanizmach, których celem jest unikanie zbyt dużego ryzyka. Ma wspinać się po stokach nachylonych nawet o 23 stopnie i unikać miejsc, których nachylenie będzie wynosiło ponad 30 stopni. Łazik wjedzie na wysokość 300 metrów i zakończy podróż w miejscu nazwanym „Aurora Park”.
« powrót do artykułu -
By KopalniaWiedzy.pl
Po raz pierwszy doszło do nieudanego wystrzelenia satelitów z konstelacji Starlink. W wyniku awarii satelity znalazły się na bardzo niskiej orbicie i wkrótce spłoną w atmosferze. Firma SpaceX zapewnia, że nie stanowią one zagrożenia. Pierwsze Starlinki trafiły na orbitę w 2019 roku. Obecnie konstelacja składa się z ponad 6000 niewielkich satelitów znajdujących się na niskiej orbicie okołoziemskiej (LEO).
Dwadzieścia satelitów Starlink zostało wystrzelonych przed 4 dniami na pokładzie rakiety Falcon 9 z Vandenberg Space Force Base. Pierwszy stopień rakiety spisał się bez zarzutu, wynosząc na orbitę drugi stopień i satelity. Następnie oddzielił się od nich i z powodzeniem wylądował. Było to już 329. udane lądowanie rakiety nośnej przeprowadzone przez SpaceX.
Pierwsze uruchomienie silników 2. stopnia przebiegło zgodnie z planem, jednak pojawił się wyciek ciekłego tlenu. W związku z tym silnik Merlin, który miał wynieść satelity na prawidłową orbitę, nie spełnił swojego zadania.
Co prawda satelity zostały prawidłowo zwolnione, ale znajdują się na orbicie o dużym mimośrodzie, która w najniższym punkcie znajduje się zaledwie 135 kilometrów nad Ziemią. To ponaddwukrotnie niżej, niż powinny się znaleźć. Na tej wysokości pojazdy doświadczają znacznego tarcia o atmosferę, przez co z każdym obiegiem tracą 5 kilometrów wysokości w apogeum (najwyższym punkcie orbity). Oddziaływanie atmosfery na satelity jest tak silne, że ich silniki nie poradzą sobie z wyniesieniem pojazdów na prawidłową orbitę. Dlatego wkrótce satelity wejdą w atmosferę i w niej spłoną.
SpaceX oświadczyła, że nie zagrażają one ani innym satelitom, ani ludziom na Ziemi. To przypomina nam, jak wymagające technicznie są loty w kosmos. Dotychczas przeprowadziliśmy 364 udane starty rakiet Falcon – które bezpiecznie dostarczały astronautów, ładunki i tysiące satelitów Starlink na orbitę – co czyni z rodziny Falcon jedną z najlepszych serii rakiet nośnych w historii, czytamy w firmowym oświadczeniu.
« powrót do artykułu -
By KopalniaWiedzy.pl
Nowo odkryta planeta wielkości Neptuna ma gęstość większą od stali. Masa TOI-1853b jest niemal dwukrotnie większa niż planet jej rozmiarów. To zaś oznacza, że musi składać się ze znacznie większego odsetka skał, niż można by się spodziewać. Dlatego naukowcy z Włoch i Wielkiej Brytanii uważają, że planeta powstała w wyniku zderzenia innych planet.
Jak czytamy na łamach Nature, zderzenie odrzuciło lżejszy materiał, jak woda i atmosfera, pozostawiając planetę złożoną w olbrzymiej mierze ze skał. W naszym Układzie Słonecznym mamy dowody na potężne kolizje między planetami. Dowodem takim jest istnienie Księżyca. Dysponujemy też dowodami na zderzenia pomiędzy mniejszymi egzoplanetami. Wiemy, że egzoplanety są niezwykle zróżnicowane. Wiele z nich nie ma odpowiedników w Układzie Słonecznym, ale często te skaliste ciała niebieskie mają podobną masę i skład do naszych lodowych olbrzymów, Neptuna i Urana, mówi doktor Phil Carter z University of Bristol.
Naukowcy przeprowadzili symulacje komputerowe, które miały pokazać, w jaki sposób mogła powstać planeta taka jak TOI-1853b. Stwierdzili, że planety, które dały jej początek, prawdopodobnie były bogate w wodę. Musiały zderzyć się z prędkością większą niż 75 km/s, by powstała planeta o takich parametrach jak TOI-1853b, dodaje Carter.
Odkrycie potwierdza rolę zderzeń w powstawaniu planet. Zdobyta dzięki niemu wiedza pozwala łączyć to, co wiemy o ewolucji Układu Słonecznego z ewolucją innych systemów planetarnych. To niezwykle zaskakująca planeta. Zwykle planety zawierające tak dużo skał powinny tworzyć gazowe olbrzymy, jak Jowisz, którego gęstość jest podobna do gęstości wody. Tymczasem TOI-1853b ma rozmiary Neptuna, ale jest gęstsza niż stal. Wykazaliśmy, że taka planeta może powstać, jeśli doszło do wysokoenergetycznych zderzeń innych planet, podsumowuje Jingyao Dou z Bristolu.
Teraz badacze chcą jeszcze dokładniej przyjrzeć się TOI-1853b, spróbować dokładnie określić jej skład i poszukać ewentualnych resztek atmosfery.
« powrót do artykułu -
By KopalniaWiedzy.pl
NASA i DARPA ujawniły szczegóły dotyczące budowy silnika rakietowego o napędzie atomowym. Jądrowy silnik termiczny (NTP) DRACO (Demonstration Rocket for Agile Cislunar Operations) powstaje we współpracy z Lockheed Martinem i BWX Technologies. Najpierw zostanie zbudowany prototyp, następnie silnik do pojazdów zdolnych dolecieć do Księżyca, w końcu zaś silnik dla misji międzyplanetarnych. Jeszcze przed kilkoma miesiącami informowaliśmy, że DRACO może powstać w 2027 roku. Teraz dowiadujemy się, że test prototypu w przestrzeni kosmicznej zaplanowano na koniec 2026 roku.
To niezwykłe przyspieszenie prac – trzeba pamiętać, że zwykle projekty związane z przestrzenią kosmiczną i nowymi technologiami mają spore opóźnienie – było możliwe dzięki częściowemu połączeniu prac, które zwykle odbywają się osobno, w drugiej i trzeciej fazie rozwoju projektu. To zaś jest możliwe dzięki wykorzystaniu sprzętu i doświadczeń z dotychczasowych misji w głębszych partiach kosmosu. Budujemy stabilną i bezawaryjną platformę, w której wszystko, co nie jest silnikiem, to technologie o niskim ryzyku, mówi Tabitha Dodson, odpowiedzialna z ramienia DARPA za projekt DRACO.
Wiemy, że niedawno zakończyła się pierwsza faza projektu, w ramach którego powstał projekt nowego reaktora. Nie ujawniono, ile faza ta kosztowała. Kolejne dwie fazy mają budżet 499 milionów USD. Jeśli prototyp zda egzamin, powstanie silnik dla misji na Księżyc. Przyniesie on spore korzyści. Napędzane nim rakiety będą przemieszczały się szybciej, zatem szybciej dostarczą ludzi, sprzęt i materiały na potrzeby budowy bazy na Księżycu. Jednak największe korzyści z nowego silnika ujawnią się podczas misji na Marsa.
Okno startowe misji na Czerwoną Planetę otwiera się co 26 miesięcy i jest dość wąskie. Dzięki lepszym silnikom i szybszym rakietom okno to można poszerzyć, co ułatwi planowanie i przeprowadzanie marsjańskich misji. Nie mówiąc już o tym, że skrócenie samej podróży będzie korzystne dla zdrowia astronautów poddanych promieniowaniu kosmicznemu. Prędkość obecnie stosowanych silników jest ograniczona przez dostępność paliwa i utleniacza. Silnik z reaktorem atomowym działałby dzięki ogrzewaniu ciekłego wodoru z temperatury -253 stopni Celsjusza do ponad 2400 stopni Celsjusza i wyrzucaniu przez dysze szybko przemieszczającego się rozgrzanego gazu. To on nadawałby ciąg rakiecie.
Pomysłodawcą stworzenia napędu atomowego jest polski fizyk Stanisław Ulam, który przedstawił go w 1946 roku. Dziesięć lat później rozpoczęto Project Orion. Efektem prac było powstanie prototypowego silnika, który został przetestowany na ziemi. Obecnie takie testy nie wchodzą w grę. Zgodnie z dzisiejszymi przepisami naukowcy musieliby przechwycić gazy wylotowe, usunąć z nich materiał radioaktywny i bezpiecznie go składować. Dlatego też prototyp zostanie przetestowany na orbicie 700 kilometrów nad Ziemią. Ponadto w latach 50. wykorzystano wzbogacony uran-235, taki jak w broni atomowej. Obecnie użyty zostanie znacznie mniej uran-235. Można z nim bezpieczne pracować i przebywać w jego pobliżu, mówi Anthony Calomino z NASA. Drugi z podobnych projektów, NERVA (Nuclear Engine for Rocket Vehicle Application), doprowadził do stworzenia dobrze działającego silnika. Ze względu na duże koszty projekt zarzucono.
Reaktor będzie posiadał liczne zabezpieczenia, które nie dopuszczą do jego pełnego działania podczas pobytu na ziemi. Dopiero po opuszczeniu naszej planety będzie on w stanie w pełni działać.
W czasie testów zostaną sprawdzone liczne parametry silnika, w tym jego ciąg oraz impuls właściwy. Impuls właściwy obecnie stosowanych silników chemicznych wynosi około 400 sekund. W przypadku silnika atomowego będzie to pomiędzy 700 a 900 sekund. NASA chce też sprawdzić, na jak długo wystarczy 2000 kilogramów ciekłego wodoru. Inżynierowie mają nadzieję, że taka ilość paliwa wystarczy na napędzanie rakiety przez wiele miesięcy. Obecnie górny człon rakiety nośnej ma paliwa na około 12 godzin. Silniki NTP powinny być od 2 do 5 razy bardziej efektywne, niż obecne silniki chemiczne. A to oznacza, że napędzane nimi rakiety mogą lecieć szybciej, dalej i zaoszczędzić paliwo.
« powrót do artykułu -
By KopalniaWiedzy.pl
Co prawda misja Europa Clipper wystartuje dopiero w przyszłym roku, ale NASA już zbiera dane osób, które chcą wysłać swoje nazwisko na orbitę Jowisza. Projekt nazwano Message in a bottle, gdyż głównym celem misji jest zbadanie Europy, pokrytego oceanem księżyca, w którego wodach może istnieć życie. Europa to szósty największy księżyc Układu Słonecznego, szósty najbliższy swojej planecie ze wszystkich 95 księżyców Jowisza i ma najbardziej gładką powierzchnię ze wszystkich ciał stałych w Układzie Słonecznym.
Start misji planowany jest na 10 października 2024 roku, a w kwietniu 2030 roku pojazd po raz pierwszy spotka się z Europą. Celem misji będzie zbadanie pokrywy lodowej i oceanu pod nią położonego, ich składu chemicznego oraz opisanie powierzchni lodu oraz wykrycie miejsc niedawnej aktywności geologicznej. Europa Clipper nie zostanie wprowadzony na orbitę Europy. Pojazd będzie okrążał Jowisza i w ciągu 3,5 roku przeleci koło księżyca 44 razy, zbliżając się do niego na odległość od 2700 do 25 kilometrów. Za każdym razem obejrzy inny fragment księżyca, przeprowadzając globalne badanie topograficzne, w tym mierząc grubość pokrywy lodowej.
Na pokładzie tej niezwykłej misji znajdą się nazwiska wielu mieszkańców Ziemi, wśród nich może być nazwisko każdgo z nas. W chwili pisania tej informacji do NASA napłynęło już 251 900 nazwisk z całego świata, w tym 65 737 z USA, 36 076 z Indii i 32 032 z Iranu. Swoje nazwiska chce też wysłać 2095 osób z Polski oraz 10 osób z Gabonu, 3 z Madagaskaru czy 2 z Sahary Zachodniej.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.