„Ożywili” najstarszego wirusa. Przez niemal 50 000 lat przebywał w wiecznej zmarzlinie
dodany przez
KopalniaWiedzy.pl, w Nauki przyrodnicze
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Naukowcy z Centrum Biologii Czeskiej Akademii Nauk odkryli 40 nieznanych dotychczas wirusów występujących w wodzie pitnej, które infekują mikroorganizmy morskie. Pierwszy z nich, szczegółowo opisany Budvirus – którego nazwa pochodzi od Czeskich Budziejowic – należy do grupy gigantycznych wirusów (niektóre z nich są większe od bakterii) i atakuje jednokomórkowe glony, kryptomonady (kryptofity). Okazało się, że Budvirus odgrywa olbrzymią rolę w naturze, kontrolując zakwit glonów i utrzymując równowagę w środowisku wodnym.
Wszystkie wspomniane wirusy zostały znalezione w zbiorniku Římov w pobliżu Czeskich Budziejowic. Jest on regularnie monitorowany od pięciu dekad, co czyni go jednym z najlepiej zbadanych zbiorników słodkowodnych w Europie.
W jednej kropli słodkiej wody może znajdować się nawet milion bakterii i 10 milionów wirusów. Pomimo rozwoju nauki, wciąż nie znamy większość z tych mikroorganizmów. Jesteśmy w stanie stopniowo je poznawać dzięki technikom sekwencjonowania DNA. Wyodrębniamy cały materiał genetyczny znajdujący się w próbce wody, przeprowadzamy jego analizę i w ten sposób śledzimy organizmy obecne w wodzie. Tak zdobywamy informacje o nowych wirusach i bakteriach, wyjaśnia Rohit Ghai, dyrektor Laboratorium Ekologii i Ewolucji Mikroorganizmów w Centrum Biologii Czeskiej Akademii Nauk.
Na ślad Budvirusa naukowcy wpadli wiosną, w czasie gwałtownego zakwitu glonów w wodzie. Wiedzieli, że dzięki drapieżnikom żywiącym się glonami, takim jak pierwotniaki czy wrotki, oraz zmniejszeniu się dostępności składników odżywczych, rozkwit wkrótce zostanie powstrzymany i ilość glonów się zmniejszy. Teraz udało się im potwierdzić, że Budvirus odgrywa olbrzymią rolę w powstrzymywaniu zakwitu glonów, a jego działalność jest szczególnie ważna wiosną. Budvirus jest pierwszym znanym nam wirusem, który infekuje kryptomonady z rodzaju Rhodomonas, jednego z najbardziej rozpowszechnionych glonów. Dlatego też możemy przypuszczać, że reprezentuje on grupę wirusów powszechną w zbiornikach słodkowodnych na całym świecie, stwierdziła Helena Henriques Vieira.
Kapsyd Budvirusa ma kształt 20-ścianu o średnicy 200 nanometrów, jest więc 10-krotnie większy od kapsydu przeciętnego wirusa. Jego genom koduje ponad 400 białek, a funkcja połowy z nich nie jest obecnie znana.
Ekosystemy słodkowodne są niezwykle dynamiczne, zachodzi tam wiele interakcji pomiędzy organizmami od bakterii i wirusów, przez pierwotniaki po ryby. Interakcje te mają olbrzymi wpływ na równowagę środowiska i jego odporność na ekstremalne zmiany. Ważne jest, byśmy dokładnie rozumieli rolę tych organizmów i ich wzajemne interakcje. Dzięki temu, gdy w wodzie będą zachodziły nieprzewidziane zmiany, będziemy wiedzieli, co się dzieje, dodaje Ghai.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Wielka bioróżnorodność lasów deszczowych czy raf koralowych to rzecz powszechnie znana. Mało kto jednak zdaje sobie sprawę, jak olbrzymia bioróżnorodność występuje w jego własnym domu. A konkretnie na szczoteczce do zębów i słuchawce od prysznica. Grupa naukowców z Northwestern University odkryła w tych miejscach zaskakująco duże zróżnicowanie wirusów, z czego wiele gatunków nie było dotychczas znanych nauce. Uczeni badali bakteriofagi, zidentyfikowane przez nich organizmy nie są niebezpieczne dla ludzi.
Mieszkańcy krajów rozwiniętych zdecydowaną większość czasu spędzają w budynkach. Ich zdrowie i dobrostan są powiązane ze środowiskiem wewnątrz tych budynków, w tym z ich mikrobiomami. To dwustronne oddziaływanie. Mikroorganizmy w budynkach wpływają na nas, a my wpływamy na nie. Nasze zachowania, sprzątanie mieszkania, używane środki chemiczne i higieny osobistej, to co jemy, wpływają na skład mikrobiomów. Uczeni z Northwestern zbadali wirusy w domowych biofilmach, skupiając się na słuchawkach od pryszniców oraz szczoteczkach do zębów. Wiemy bowiem, że bakteriofagi, wirusy atakujące bakterie i wysoce specyficzne dla konkretnych ich gatunków, wpływają na strukturę i funkcjonowanie bakteryjnych społeczności. A prysznic czy szczoteczka do zębów to środowiska podlegające dynamicznym zmianom. Zamieszkujące je mikroorganizmy mają do czynienia z ekstremalnymi zmianami temperatur, okresami wysokiej wilgotności oraz wysychania, są wystawione na działanie produktów chemicznych używanych i do higieny osobistej i do utrzymani czystości w łazience.
Badacze przeprowadzili kompleksową analizę genetyczną mikroorganizmów zamieszkujących 34 szczoteczki do zębów i 92 słuchawki do prysznica. Znaleźli na nich ponad 600 gatunków wirusów, z których wiele nie było dotychczas znanych. Szczoteczki do zębów i słuchawki prysznicowe do siedliska fagów zupełnie odmienne od innych, mówi główna autorka badań, Erica M. Hartmann. Badania pokazały, że szczoteczki i słuchawki są zasiedlone prze różne fagi. Co więcej, każdy z badanych przedmiotów miał własny, unikatowy skład mikroorganizmów. Olbrzymie zróżnicowanie mikroorganizmów zaskoczyło uczonych i pokazało, jak wielu bakteriofagów jeszcze nie znamy.
Po co jednak badać mikroorganizmy, które nie są szkodliwe dla człowieka? Fagi są interesujące z punktu widzenia biotechnologii i medycyny. Penicylina pochodzi z pleśni na chlebie. Być może kolejny rewolucyjny antybiotyk zostanie stworzony z czegoś, co żyje na twojej szczoteczce do zębów, wyjaśnia Hartmann.
Uczona dodaje, że projekt badawczy rozpoczął się od zwykłej ciekawości. Jesteśmy otoczeni mikroorganizmami. Jednak ściany czy stoły to dla nich trudne środowisko. Preferują one miejsca, gdzie jest woda. A ta powszechnie występuje na szczoteczkach do zębów i słuchawkach.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Roztapianie się wiecznej zmarzliny wiąże się z uwolnieniem z niej nieznanych nauce mikroorganizmów. Wciąż mamy niewiele informacji na ich temat, nie wiemy, czy tacy „podróżnicy w czasie” mogą po uwolnieniu z wiecznej zmarzliny się rozwijać i przystosować do obecnie panujących warunków. Giovanni Strona z Uniwersytetu w Helsinkach i Wspólnego Centrum Badawczego Komisji Europejskiej wraz z grupą naukowców z Finlandii, Australii i USA przeprowadzili cyfrowe symulacje zachowania mikroorganizmów uwalnianych z wiecznej zmarzliny.
Przebudzone z lodu czy wiecznej zmarzliny bakterie i wirusy zagroziły ludzkości w niejednym filmie czy książce. W rzeczywistości jednak niewiele wiemy o potencjalnych ryzykach, jakie mogą wynikać z wpływu globalnego ocieplenia na mikroorganizmy uwięzione w glebie czy wodzie od wielu tysięcy lat.
Zespół Strony ocenił ekologiczne ryzyko i skutki inwazji wirtualnych wirusów na istniejące społeczności bakterii. W przeprowadzonych symulacjach uwolnione z wiecznej zmarzliny patogeny podobne do wirusów wchodziły w interakcje z gospodarzami podobnymi do bakterii.
Symulacje pokazały, że przebudzone wirusy są często w stanie przetrwać i ewoluować we współczesnym środowisku. W 3,1% analizowanych przypadków mogą zdominować bakteryjną społeczność, na którą dokonały inwazji. Jednak nawet wówczas wirusy takie mają pomijalny wpływ na zaatakowane bakterie. Problemem jest 1,1% przypadków, w których wirusy albo prowadziły do znacznych strat – sięgających 32% – albo do zwiększenia – do 12% – bioróżnorodności mikroorganizmów na zajmowanym przez siebie terenie. Mimo niewielkiego prawdopodobieństwa wystąpienia takiego scenariusza należy wziąć pod uwagę olbrzymią liczbę uśpionych mikroorganizmów regularnie uwalnianych do obecnego środowiska. To zwiększa prawdopodobieństwo spowodowania przez nie znaczących zmian w środowisku naturalnym. Nowe mikroorganizmy, uwolnione z topniejącej wiecznej zmarzliny czy lodu mogą być siłą napędową trudnych do przewidzenia procesów ekologicznych.
Obecnie nie wiemy, co takie zmiany mogą spowodować. Nie można jednak wykluczyć, że nowe patogeny będą stanowiły zagrożenie dla ludzkiego zdrowia, czy to bezpośrednie, czy to w postaci zoonoz, zarażających nas za pośrednictwem zwierząt.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Endometrioza to poważna choroba, która dotyka do 10% kobiet w wieku rozrodczym. Jej najbardziej widocznym objawem jest ból, niejednokrotnie tak mocny i długotrwały, że uniemożliwia normalne funkcjonowanie. W wyniku choroby komórki wyściółki macicy, endometrium, przemieszczają się po organizmie osadzając się i rozrastając w różnych miejscach, niszcząc organizm i życie kobiety. Choroba ta jest jedną z najczęstszych przyczyn niepłodności kobiet. Mimo to, wciąż nie znamy jej przyczyn.
W ostatnim czasie coraz więcej uwagi zwraca się na potencjalną rolę mikroorganizmów w rozwoju endometriozy. Rozwój endometriozy próbuje się powstrzymywać za pomocą terapii hormonalnych i zabiegów chirurgicznych. Najczęściej są to jednak półśrodki, a choroba nawraca przez kilkadziesiąt lat, aż do okresu menopauzy. Chcielibyśmy znaleźć nowe sposoby leczenia. Jednak najpierw musimy się dowiedzieć, dlaczego ludzie cierpią na endometriozę, mówi specjalizująca się w biologii nowotworów Yutaka Kondo z Uniwersytetu w Nagoi.
Pani Kondo wraz ze swoim zespołem przebadała tkankę endometrium 155 Japonek. I okazało się, że u 64% kobiet z endometriozą występują mikroorganizmy z rodzaju Fusobacterium. U kobiet zdrowych bakterie te znaleziono jedynie u 7% badanych. Tymczasem wiemy, że Fusobakterium, często występujące w ustach, jelitach i pochwie może powodować różne choroby, jak np. choroby przyzębia.
Naukowcy postanowili sprawdzić, czy Fusobacterium może mieć wpływ na rozwój endometriozy. Dlatego też przeszczepili tkankę endometrium od jednych do jamy brzusznej innych myszy. Zgodnie z oczekiwaniami, w ciągu kilku tygodni u myszy pojawiły się blizny typowe dla endometriozy. Okazało się, że jest ich więcej i są one większe u tych myszy, którym jednocześnie przeszczepiono Fusobacterium. Myszy zaczęto więc leczyć, podawanymi dopochwowo, antybiotykami – metronidazolem lub chloramfenikolem. Doprowadziło to do zmniejszenia liczby i rozmiarów ognisk endometriozy. Japończycy prowadzą obecnie badania kliniczne na kobietach z endometriozą, by sprawdzić, czy podawanie antybiotyków przyniesie im przynajmniej częściową ulgę.
Badania są obiecujące, ale mają poważne ograniczenia. Myszy nie są bowiem dobrymi modelami do badań nad endometriozą, gdyż ani nie menstruują, ani nie tworzą się u nich spontanicznie blizny spowodowane endometriozą. Dlatego też konieczne jest prowadzenie większej liczby badań na ludziach. Ponadto Japończycy skupili się na badaniu blizn tworzących się na jajnikach, tymczasem u ludzi w wyniku endometriozy mogą powstawać one w całym organizmie i na wszystkich organach wewnętrznych.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Metale ziem rzadkich wykorzystujemy w smartfonach, telewizorach, silnikach elektrycznych czy turbinach wiatrowych. Są one szeroko rozpowszechnione w skorupie ziemskiej. Jednak występują w tak niewielkiej koncentracji, że ich pozyskanie nie jest proste. To proces bardzo energochłonny, składający się z setek kroków oraz wymagający użycia toksycznych chemikaliów. Okazuje się jednak, że można go uprościć, uczynić tańszym, czystszym i bezpieczniejszym dzięki bakteriom wyizolowanym właśnie z pączków dębu szypułkowego.
Naukowcy z Pennsylvania State University odkryli mechanizm, za pomocą którego bakterie mogą selektywnie wybierać pomiędzy metalami ziem rzadkich. Zbadali, jak ten mechanizm działa i opracowali metodę szybkiego i efektywnego oddzielania podobnych pierwiastków w temperaturze pokojowej. Metoda ta może przyczynić się do powstania bardziej efektywnych, tańszych i przyjaznych dla środowiska technologii pozyskiwania i recyklingu pierwiastków ziem rzadkich.
Procesy biologiczne potrafią odróżnić metale ziem rzadkich od wszystkich innych metali, a teraz wykazaliśmy, że potrafią też odróżniać od siebie poszczególne metale ziem rzadkich, decydując, który jest dla nich użyteczny, a który nie, mówi główny autor badań, profesor Joseph Cotruvo. Wykazaliśmy, jak wykorzystać te właściwości do pozyskiwania i oddzielania pierwiastków ziem rzadkich. Niezależnie od tego, czy wydobywasz metale ziem rzadkich ze skał, czy też z poddawanych recyklingowi urządzeń, musisz je od siebie oddzielić, by uzyskać czysty metal. Nasza metoda, przynajmniej teoretycznie, może znaleźć zastosowanie niezależnie od metody pozyskiwania pierwiastka, dodaje uczony.
Do grupy pierwiastków ziem rzadkich zaliczamy 15 lantanowców oraz iterb i skand. Są one podobne pod względem chemicznym, mają podobne rozmiary i często występują razem. Znajdują jednak różne zastosowania technologiczne.
Obecnie podczas separacji poszczególnych pierwiastków ziem rzadkich wykorzystuje się olbrzymie ilości toksycznych chemikaliów, takich jak nafta czy fosfoniany. Proces separacji składa się nawet z setek poszczególnych kroków, koniecznych do uzyskania czystego metalu. Jeden problem to oddzielenie tych pierwiastków od skał. Gdy już to się uda, mamy drugi problem jakim jest oddzielenie poszczególnych metali od siebie. To największe i najbardziej interesujące wyzwanie, gdyż pierwiastki te są do siebie podobne. My wzięliśmy naturalnie występującą proteinę, którą nazywamy lanmoduliną (LanM) i przygotowaliśmy ją tak, by rozróżniała te pierwiastki, wyjaśnia Cotruvo.
Cotruvo i jego koledzy wiedzieli, że natura od milionów lat potrafi wykorzystywać pierwiastki ziem rzadkich. Dlatego właśnie w naturze poszukiwali rozwiązania problemu. Przed sześciu laty wyizolowali lanmodulinę z jednej z bakterii i wykazali, że 100 milionów razy lepiej łączy się ona z lantanowcami niż z innymi metalami. Później udowodnili, że można ją wykorzystać do uzyskania pierwiastków ziem rzadkich z mieszaniny, w której znajduje się wiele innych metali. Jednak ta pierwsza lanmodulina radziła sobie znacznie gorzej z zadaniem odróżniania poszczególnych pierwiastków ziem rzadkich od siebie.
Podczas najnowszych badań Cotruvo i jego zespół znaleźli setki naturalnych protein mniej więcej podobnych do pierwszej zidentyfikowanej przez sobie lanmoduliny. Jednak skupili się na jednej, która była wystarczająco różna – różnice dochodziły do 70% – spodziewając się, że będzie ona miała nieco różne właściwości. Wybrana przez nich lanmodulina występuje u bakterii Hansschlegelia quercus wyizolowanej z pączków dębu szypułkowego.
Okazało się, że gdy lanmodulina z tej bakterii łączy się z lżejszymi lantanowcami, jak neodym, tworzy silne dimery z identycznymi fragmentami lanmoduliny. Gdy zaś łączy się z cięższymi lantanowcami, jak dysproz, woli się nie łączyć, pozostając monomerem. To było zaskoczenie, gdyż pierwiastki te są bardzo podobnych rozmiarów. Tymczasem ta lanmodulina jest zdolna do rozróżnienia wielkości w skalach dla nas niewyobrażalnych, wynoszących bilionowe części metra. Wyczuwa różnice mniejsze niż 1/10 średnicy atomu, zachwyca się Cotruvo.
Gdy naukowcy szczegółowo przeanalizowali wpływ łączenia się z lantanowcami na tworzenie dimerów przez lanmodulinę, okazało się, że wszystko zależy od pojedynczego aminokwasu, który zajmuje inną pozycję przy łączeniu się z lekkim lantanowcem niż podczas łączenia się z cięższym lantanowcem. Pozycja tej proteiny decyduje o interakcji z innym monomerem, więc i o preferencji co do tworzenia dimerów lub pozostaniu monomerem. Gdy naukowcy usunęli ten aminokwas z lanmoduliny, proteina znacznie gorzej radziła sobie z odróżnianiem poszczególnych lantanowców.
Uzbrojeni w tę wiedzę naukowcy Penn State podjęli współpracę z uczonymi z Lawrence Livermore National Laboratory i wykazali, że lanmodulinę można wykorzystać do oddzielenia od siebie neodymu i dysprozu, najważniejszych składników magnesów stałych. A można to uczynić w jednym kroku, w temperaturze pokojowej, bez wykorzystywania żadnych organicznych rozpuszczalników.
Nie jesteśmy pierwszymi, którzy zauważyli, że dimeryzacja może być metodą na oddzielanie metali, szczególnie za pomocą syntetycznych molekuł. Jednak jako pierwsi zaobserwowaliśmy takie zjawisko występujące w naturze w odniesieniu do lantanowców. To badania podstawowe, które potencjalnie można wykorzystać w przemyśle. Odkrywamy sekrety natury i uczymy się od niej, jak być lepszymi chemikami, dodaje Cotruvo. Zdaniem uczonego, najnowsza praca to dopiero początek. Cotruvo uważa, że z czasem nauczymy się rozwiązywać najtrudniejszy z problemów – efektywnie oddzielać od siebie pierwiastki ziem rzadkich, które bezpośrednio ze sobą sąsiadują w układzie okresowym.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.