Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Jony podczas fuzji jądrowej zachowują się inaczej, niż przewidują teorie

Rekomendowane odpowiedzi

Naukowcy z National Ignition Facility (NIF) w Lawrence Livermore National Laboratory zauważyli, że jony w reaktorze fuzyjnym zachowują się inaczej, niż wynika z obliczeń. Prowadzone w NIF badania dadzą lepszy wgląd w działanie reaktorów fuzyjnych, w których reakcja inicjowana jest za pomocą potężnych impulsów laserowych.

Specjaliści z całego świata próbują odtworzyć reakcje fuzji jądrowej zachodzące na Słońcu. Ich opanowanie dałoby ludzkości niemal nieograniczone źródło czystej energii. W NIF wykorzystuje się zespół 192 laserów, za pomocą których kompresuje się kapsułki z trytem i deuterem, zapoczątkowując fuzję jądrową. To koncepcja znana jako ICF (Inertial Confinement Fusion – inercyjne uwięzienie plazmy) Przed kilkoma dniami na łamach Nature Physics opublikowano artykuł, z którego dowiadujemy się, że zmierzona energia neutronów – przynajmniej podczas najbardziej intensywnej fazy fuzji – jest wyższa niż spodziewana.

To oznacza, że jony biorące udział w fuzji mają większą energię. To coś czego się nie spodziewaliśmy i nie byliśmy w stanie przewidzieć na podstawie standardowych równań opisujących ICF, mówi fizyk Alastair Moore, główny autor artykułu.

Eksperci nie są pewni, co spowodowało obserwowane zjawisko, podkreślają jednak, że to jeden z najbardziej bezpośrednich pomiarów jonów biorących udział w fuzji. Pomiary oznaczają, że teoretycy będą musieli zmodyfikować teorie i wzory, którymi posługują się specjaliści z NIF. Jest tutaj też powód do optymizmu. Dzięki lepszym teoriom wyjaśniającym obserwowane zjawiska, być może uda się opracować metodę zainicjowania długotrwałej samopodtrzymującej się reakcji.

Zaobserwowanie niespodziewanego zachowania jonów było możliwe dzięki opracowaniu nowej technologii detektorów, nazwanej Cherenkov nToF. Dzięki niej niepewność odnośnie prędkości neutronów wynosi zaledwie 5 km/s czyli 1/10 000. Średnia energia neutronów uzyskiwana podczas reakcji w NIF oznacza, że poruszają się one z prędkością ponad 51 000 km/s.

Jednym z możliwych wyjaśnień zaobserwowanego zjawiska jest stwierdzenie, że jony deuteru i trytu nie są w równowadze. Potrzebujemy bardziej zaawansowanych symulacji, by to zrozumieć. Współpracujemy na tym polu z Los Alamos National Laboratory, Imperial College London i MIT, dodaje Moore.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 17.11.2022 o 10:45, KopalniaWiedzy.pl napisał:

jony w reaktorze fuzyjnym zachowują się inaczej, niż wynika z obliczeń

Raczej zachowują się inaczej, niż wynika z założeń do obliczeń.

Cytat

Evidence for suprathermal ion distribution in burning plasmas

Nie ma w tym nic dziwnego - fuzja zachodzi zbyt szybko aby mogło dojść do pełnej termalizacji plazmy.
Fuzja nie podnosi temperatury tylko dostarcza wielkich porcji energii które, cząsteczki dostają tą energię w sposób skumulowany i z dużym prawdopodobieństwem ulegną kolejnej fuzji zanim zdołają rozproszyć energię.
Zjawisko proste i raczej oczywiste.
 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
1 minutę temu, Astro napisał:

Mam wątpliwości, bo na "wyczucie" byłby to argument przy gęstościach w tokomakach, ale nie w przypadku NIF.

Jest dokładnie odwrotnie. To w tokomakach plazma ma czas na termalizację. Ale w przypadku "eksplozji" praktycznie cały czas mamy do czynienia z procesem nierównowagowym.

 

Zwłaszcza że "problem" pojawia sie w fazie najintensywniejszej syntezy

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
3 godziny temu, Astro napisał:

Ok, ale miałem na myśli czas termalizacji. Przy podobnych energiach (temperaturach), a przy różnych gęstościach cząstki w rzadszej plazmie mają dłuższą drogę swobodną, a tym samym potrzebują więcej czasu na termalizację

Rozumowanie od d*py strony (Nie mówię że się nie da osiągnąć celu, oznacza to tylko tyle że człowiek strasznie się namęczy zanim coś trafi do żołądka ;) I choć czasami trzeba się namęczyć, to jednak warto przed obliczeniami znać wynik :P ).
Tokomaki itp pracują w sposób kwazi-ciągły, a tu mamy pracę wybitnie impulsową na poziomie mikrowybuchów jądrowych.
Istotne jest to, że w tym drugim wypadku występuje zjawisko "samonagrzewania" od reakcji syntezy, i. generalnie przebieg temperatury ma formę grzebienia.
 

O ile dobrze rozumiem w tokomaku nie dochodzi do takiego zjawiska bo pod wpływem temperatury plazma się rozdyma, i dlatego ma postać bardziej "cefeidy" - krzywa wzrostu tempa reakcji jest wolniejsza od tempa reakcji układu. Tokamaki są "gwiazdami", a tu mówimy o mikro-supernowych. ( "Micronova" - piękna nazwa dla firmy ).

Notabene jestem oczarowany podejściem firmy FirstLight. Przypomina ono polską syntezę jądrową z lat 70 gdzie chcieliśmy wykorzystywać materiały wybuchowe wsparte laserami.
Fist Light zamiast materiałów wybuchowych używa pocisków hipersonicznych, co pozwala zrezygnować z dogrzewania laserami. To przypuszczalnie najlepszy sposób na budowę elektrowni termojądrowych, bo uzyskali już reakcję syntezy dla pocisków 6.5 km/s, a dużych problemów w skalowaniu prędkości pocisków nie ma. Podejście unika całej zabawy z plazmą, wielkimi polami magnetycznymi, laserami - po prostu miniaturowa bomba termojądrowa podgrzewa wnętrze reaktora, co 30 sekund.
Sama komora postać długiego obracającego się walca wypełnionego ciekłym litem, z pustą komorą w środku do której dostarczane są pociski (z jednej) i paliwo (z drugiej strony). Elegancja inżynieryjna absolutnie powala, pozbyto się wszystkiego co sprawiało trudność.

Edytowane przez peceed

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
16 godzin temu, peceed napisał:

po prostu miniaturowa bomba termojądrowa podgrzewa wnętrze reaktora, co 30 sekund.

Pomysł niezły ale chciałbym zobaczyć koszty/zyski. Elektrownia termojądrowa ma być urzadzeniem zyskownym a nie zabawką.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
32 minuty temu, thikim napisał:

Pomysł niezły ale chciałbym zobaczyć koszty/zyski

To najtańsze podejście. Obywa się bez całej drogiej maszynerii jak lasery czy nadprzewodzące elektromagnesy o masie setek ton, zastępując ją działem. Jeśli zadziała, to musi być zarówno najtańsze jak i zyskowne.
Byłoby ironią losu że najprostsze rozwiązanie zaproponowano w praktyce jako ostatnie.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nawet najtańsze nie znaczy wystarczająco dobre w kategorii koszty/zysk.
Niemniej zapowiada się bardzo ciekawie. Jak pisałeś - wygląda na pomysł prosty w skalowaniu.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
2 godziny temu, Astro napisał:

Już? To prawie pierwsza kosmiczna. ;)

Całe 50 neutronów. Co do prędkości - niby tak, ale przy dziale elektromagnetycznym to da się więcej.
Asteroidy uderzają z prędkocią 18 km/s, komety - 30 km/s. Jest zapas ;)
 

2 godziny temu, Astro napisał:

Cholernie ciekawe, że to wszystko z pomocą "gas gun".

Przecież były projekty wystrzeliwania satelitów na orbitę...

2 godziny temu, Astro napisał:

Czyli modelowe - zaczynamy od pryncypiów.

Powiedzmy że od "podstaw" ;)

Edytowane przez peceed

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jedno co mnie zastanawia to ta cisza odnośnie radioaktywności trytu. Prawie 10 tyś. curie na gram!
Te elektrownie będą cholernie radioaktywne, z nieuniknionymi wyciekami.
Dla zabawy zastanowiłem się co by się stało, gdyby udało się zrobić miniaturkowe nuki fuzyjne inicjwane materiałami wybuchowymi. I wyszło, że dla bomby około 5 tonowej radioaktywność głowicy deuterowo-trytowej (w zapłon deuterku litu nie wierzę) to 150 curie. Nawet jeśli tylko 1% zostanie, to wciąż w miejscu trafienia mogą zostać poważne skażenia.

Cała elektrownia termojądrowa musi być uszczelniona, i najlepiej nie zawierać w sobie śladów pary wodnej.

14 godzin temu, thikim napisał:

Jak pisałeś - wygląda na pomysł prosty w skalowaniu.

Wraz ze wzrostem rozmiarów spada stosunek powierzchni ścianek do siły eksplozji. Moc maksymalna będzie ograniczona zdolnością litu do przyjmowania ciepła. A nie doczytałem jak chcą sobie radzić z oknami wlotowymi. Z drugiej strony - im większy ładunek uda się skompresować, tym łatwiejsza fuzja, ze względu na dłuższy czas. A ten będzie proporcjonalny do rozmiarów liniowych kapsułki. Więc z tym skalowaniem to nie do końca musi wyjść łatwo. I jeszcze jest kwestia niestabilności dla dużych kapsułek. Naiwna gładka fizyka pozwala kompresować dłużej, ale w praktyce są limity.
Więc wciąż może się okazać że jest to pomysł którego nie będzie się dało zrealizować.  

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Lubię te wasz bajdurzenia.

Na słońcu nie ma żadnej fuzji i nigdy nie było. No, ale niedługo dzień dziecka, załóżmy, że jest :)

*Jest, ale nigdy tego nie odtworzymy - w sensie zysku energetycznego. Sprawa jest prosta. Nie dysponujemy darmową energią w postaci silnego pola grawitacyjnego, które pozwoliło by utrzymać w ryzach taką hipotetyczną fuzję. Można się rozejść. Z okazji dnia dziecka wybuduje się kolejną nikomu nie potrzebną zabawkę.     

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Owszem - dlatego to jest takie trudne. 
Ale pomysłowość ludzka też jest wielka chociaż ograniczona.
Mnie ten pomysł interesuje w kontekście tego że wszystkie inne do tej pory uważam za nie mające szans właśnie z powodu braku tego darmowego silnego pola grawitacyjnego. Ale zauważ że jednak bombę termojądrową byliśmy w stanie skonstruować. Teraz jest kwetia skali bo żeby coś ogrzać potrzeba takich mikrowybuchów termojądrowych.
I ten pomysł jako że nowy - ma przynajmniej jakąś szansę realizacji.
W sumie ciekawi mnie gdzie w kwestii miniaturyzacji bomby termojądrowej napotkano granicę, czyli jak małą bombę termojądrową jesteśmy w stanie skonstruować.

Edytowane przez thikim

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Astronomowie odkryli wielką galaktykę radiową ze strumieniami plazmy rozciągającymi się na odległość 32-krotnie większą niż średnica Drogi Mlecznej. Kosmiczna megastruktura o średnicy 3,3 miliona lat świetlnych została odkryta przez międzynarodowy zespół astronomów korzystających z południowoafrykańskiego teleskopu MeerKAT. Autorzy badań mają nadzieję, że rzucą one nieco światła na pochodzenie i ewolucję olbrzymich struktur we wszechświecie.
      Wielkie galaktyki radiowe (GRG) to duże struktury wystrzeliwujące w przestrzeń kosmiczną dżety plazmy na odległość milionów lat świetlnych. Strumienie te napędzane są przez supermasywne czarne dziury znajdujące się w centrum galaktyk. Jeszcze do niedawna sądzono, że GRG są dość rzadkie. Jednak nowa generacja radioteleskopów, takich jak MeerKAT, pokazała, jak mylne było to przekonanie. W ciągu ostatnich pięciu lat liczba znanych nam GRG dosłownie eksplodowała, dzięki nowym potężnym teleskopom jak MeerKAT, mówi główna autorka badań, studentka Uniwersytetu w Kapsztadzie Kathleen Charlton.
      Nowo odkryta galaktyka została nazwana nieoficjalnie „Inkathazo”, co w językach zulu i xhosa znaczy „kłopoty”, gdyż naukowcy mieli problemy ze zrozumieniem procesów tam zachodzących. Nie ma ona takich samych charakterystyk jak wiele innych wielkich galaktyk radiowych. Na przykład dżety plazmy mają niezwykły kształt. Zamiast być proste, jeden z nich jest zagięty.
      Inkathazo znajduje się w centrum gromady galaktyk, tymczasem zwykle GRG są izolowane. Gromada powinna przeszkadzać w powstaniu tak rozległych strumieni plazmy. To fascynujące i niespodziewane odkrycie. Znalezienie GRG w gromadzie każe zadać sobie pytania o wpływ interakcji w lokalnym środowisku na formowanie się i ewolucję GRG, dodaje współautor badań, doktor Kshitiji Thorat z Uniwersytetu w Pretorii.
      Naukowcy wykorzystali MeerKAT do stworzenia jednej z najdokładniejszych map GRG. Ujawniły on złożoność dżetów plazmy wydobywających się z galaktyki. Okazało się na przykład, że niektóre elektrony niespodziewanie otrzymują duże dawki energii. Być może dzieje się tak, gdy strumień plazmy zderzy się z gorącym gazem w przestrzeniach pomiędzy galaktykami w gromadzie. Nowe odkrycie to wyzwanie dla obecnie obowiązujących modeli. Pokazuje ono, że nie rozumiemy wielu ze zjawisk fizycznych dotyczących plazmy w tak ekstremalnych środowiskach.
      Co ciekawe, na niewielkim skrawku nieboskłonu, na którym odkryto Inkathazo, wcześniej znaleziono też dwie inne GRG. Sam fakt, że kierując MeerKAT na niewielki skrawek nieba znaleźliśmy tam w sumie 3 GRG sugeruje, że na południowym nieboskłonie znajduje się olbrzymia liczba nieodkrytych jeszcze wielkich galaktyk radiowych, stwierdza doktor Jacinta Delhaize z Uniwersytetu w Kapsztadzie.
      MeerKAT niejednokrotnie dowiódł swoich olbrzymich możliwości, a trzeba pamiętać, że jest on zaledwie prekursorem SKA (Square Kilometre Array), zespołu teleskopów w Australii i RPA. SKA ma rozpocząć badania jeszcze przed końcem obecnej dekady.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z amerykańskich Ames National Laboratory i Iowa State University stoją na czele konsorcjum, które pracuje nad nowymi materiałami dla reaktorów fuzyjnych. Stworzenie odpowiednich materiałów to niezbędny krok, które mają umożliwić komercyjne wykorzystywanie energii z fuzji jądrowej. Badania prowadzone są w ramach programu CHADWICK (Creating Hardened And Durable fusion first Wall Incorporating Centralized Knowledge) ogłoszonego niedawno przez Advanced Research Projects Agency–Energy (ARPA-E).
      Celem agencji jest promocja i finansowanie zaawansowanych badań nad technologiami pozyskiwania energii. Przed 2 miesiącami ARPA-E ogłosiła warty 30 milionów USD program CHADWICK, do którego zakwalifikowało się 13 projektów.
      Jedną z głównych trudności w pozyskiwaniu energii w procesie fuzji jądrowej jest odpowiednie uwięzienie plazmy, w której odbywa się reakcja. Uwięziona plazma jest jak miniaturowe Słońce zamknięte w pojemniku, który musi wytrzymać oddziaływanie niezwykle wysokiej temperatury, silne promieniowanie i pola magnetyczne, a jednocześnie efektywnie przekazywać ciepło, które jest zamieniane w elektryczność.
      Projekt CHADWICK skupia się na pierwszej ścianie reaktora, tej, która otacza plazmę uwięzioną za pomocą silnego pola magnetycznego. Pierwsza ściana składa się z dwóch warstw materiału. Ta wewnętrzna jest blisko plazmy, zewnętrzna pomaga przekazać energię do innych części reaktora.
      Pierwsza warstwa musi być wytrzymała, odporna na pęknięcia i erozję. Nie może też być przez długi czas radioaktywna, by po wyłączeniu reaktora można było bezpiecznie przeprowadzić prace w jego wnętrzu. Nicolas Arbigay z Ames National Laboratory kieruje pracami nad udoskonaleniem pierwszej warstwy.
      Głównym materiałem, jaki badamy, jest wolfram. Nie licząc węgla, a właściwie jego niektórych form – jak diament – ma on najwyższą temperaturę topnienia ze wszystkich pierwiastków, stwierdził uczony.
      Jego laboratorium kupiło ostatnio specjalną platformę do wytwarzania i testowania nowych materiałów. Możemy robić proszki i odlewy różnych stopów, w tym czystego wolframu, wyjaśnia Argibay i dodaje, że w ciągu kilku najbliższych miesięcy laboratorium wzbogaci się w nowe urządzenia, które pozwolą na uzyskiwanie materiałów również w ilości wystarczającej do prowadzenia programów pilotażowych.
      Ames Lab zainwestowało też w rzadki system pozwalający na badanie materiałów ogniotrwałych w temperaturze znacznie powyżej 1000 stopni Celsjusza i posiada jedyny w USA komercyjny system testowania takich materiałów w temperaturze do 1500 stopni. To niezwykle ważny element prac nad pierwszą ścianą reaktora fuzyjnego.
      Materiał pierwszej ściany jest tym, co utrzymuje całość. Musi być wytrzymały. W ścianie muszą być zintegrowane różne elementy, jak kanały chłodzące, pozwalające na pozyskiwanie ciepła, wyjaśnia Jordan Tiarks. Pracuje on nad kolejnym aspektem reaktora fuzyjnego. Tiarks specjalizuje się w stalach ODS (stale dyspersyjnie umacniane tlenkami) przyszłej generacji. Stale ODS są wzbogacone ceramicznymi nanocząstkami, co poprawia ich właściwości mechaniczne i pozwala przetrwać wysokie promieniowanie. To, czego się dotychczas nauczyliśmy, chcemy wykorzystać do stworzenia nowego materiału, stopu bazującego na wanadzie, który będzie dobrze sprawdzał się w reaktorach fuzyjnych, mówi Tiarks.
      Problem w tym, że wanad zachowuje się inaczej niż stal. Ma znacznie wyższą temperaturę topnienia i jest bardziej reaktywny. Nie można go łączyć z ceramiką, więc zespół Tiarksa szuka innych sposobów na tworzenie stopów wanadu. Wykorzystujemy gaz pod wysokim ciśnieniem, by rozbić roztopiony materiał na niewielkie kropelki, które gwałtownie schładzamy i uzyskujemy proszek. Tutaj nie możemy użyć żadnej ceramiki, stwierdza uczony. Dodatkowym problemem jest reaktywność wanadu. Już same proszki są bardzo reaktywne. Jeśli tworzymy z nich aerozol, mogą eksplodować. Na szczęście duża część metali tworzy cienką warstwę tlenu na takich cząstkach, która zapobiega kolejnym reakcjom. Ta warstewka chroni resztę cząstki przed dalszym utlenianiem się. Znaczna część prowadzonych przez nas badań polega na opracowaniu metod zapobiegania gwałtownym reakcjom. Jest to konieczne, by bezpiecznie używać proszku. Jednocześnie zaś nie możemy zbytnio ich utlenić, bo to negatywnie wpłynie na ich właściwości. Opracowanie odpowiednich metod przetwarzania sproszkowanych materiałów opartych na wanadzie pozwoli lepiej kontrolować strukturę drugiej warstwy pierwszej ściany reaktora.
      Gdy już odpowiedni materiał zostanie uzyskany, jego testowaniem zajmie się zespół profesora Sida Pathaka z Iowa State University. Uczeni nałożą proszek na odpowiednie powierzchnie i będą badali przede wszystkim odporność tak stworzonych paneli na silne promieniowanie reaktora fuzyjnego. Uważają, że nowy materiał będzie bardziej odporny niż dotychczas używane. Jednak, jak zauważa uczony, negatywne skutki promieniowania ujawniają się w materiale ścian reaktora po 10-20 latach. Projekt badawczy będzie trwał 3 lata, więc nie jest możliwe odtworzenie odpowiednich warunków. Dlatego badania będą prowadzone w Ion Beam Laboratory, gdzie materiał będzie bombardowany za pomocą jonów, a nie neutronów, jakby to miało miejsce w reaktorze. Dodatkową zaletą jest fakt, że materiał potraktowany jonami nie będzie radioaktywny, co ułatwi badania. Z kolei negatywną stroną użycia jonów jest bardzo płytka penetracja. Uszkodzenia materiału pojawią się na głębokości 1-2 mikrometrów, więc ich badanie będzie wymagało użycia wyspecjalizowanych narzędzi.
      Opracowanie komercyjnej fuzji jądrowej stawia przed nami jedne z największych wyzwań technologicznych naszych czasów, jednocześnie jednak niesie ze sobą obietnicę olbrzymich korzyści, w postaci nieograniczonego źródła czystej energii, podsumowuje Tiarks.
      Fuzja jądrowa – czyli reakcja termojądrowa – to obiecujące źródło energii. Polega ona na łączeniu się atomów lżejszych pierwiastków w cięższe i uwalnianiu energii. To proces, który zasila gwiazdy.  Taki sposób produkcji energii na bardzo wiele zalet. Nie dochodzi tutaj do uwalniania gazów cieplarnianych. Na Ziemi są olbrzymie zasoby i wody i litu, z których można pozyskać paliwo do fuzji jądrowej, deuter i tryt. Wystarczą one na miliony lat produkcji energii. Takiego luksusu nie mamy ani jeśli chodzi o węgiel czy gaz ziemny, ani o uran do elektrowni atomowych. Tego ostatniego wystarczy jeszcze na od 90 (według World Nuclear Association) do ponad 135 lat (wg. Agencji Energii Atomowej). Fuzja jądrowa jest niezwykle wydajna. Proces łączenia atomów może zapewnić nawet 4 miliony razy więcej energii niż reakcje chemiczne, takie jak spalanie węgla czy gazu i cztery razy więcej energii niż wykorzystywane w elektrowniach atomowych procesy rozpadu atomów.
      Co ważne, w wyniku fuzji jądrowej nie powstają długotrwałe wysoko radioaktywne odpady. Te, które powstają są na tyle mało radioaktywne, że można by je ponownie wykorzystać lub poddać recyklingowi po nie więcej niż 100 latach. Nie istnieje też ryzyko proliferacji broni jądrowej, gdyż w procesie fuzji nie używa się materiałów rozszczepialnych, a radioaktywny tryt nie nadaje się do produkcji broni. Nie ma też ryzyka wystąpienia podobnych awarii jak w Czernobylu czy Fukushimie. Jednak fuzja jądrowa to bardzo delikatny proces, który musi przebiegać w ściśle określonych warunkach. Każde ich zakłócenie powoduje, że plazma ulega schłodzeniu w ciągu kilku sekund i reakcja się zatrzymuje.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Zespół z Lawrence Livermore National Laboratory po raz drugi uzyskał w wyniku fuzji jądrowej (reakcji termojądrowej) więcej energii niż zostało wprowadzone do kapsułki paliwowej. Pierwszy raz o takim wydarzeniu usłyszeliśmy w grudniu ubiegłego roku. Teraz energii uzyskano więcej niż wówczas. Szczegóły poznamy podczas zbliżających się konferencji naukowych oraz z opublikowanych artykułów w recenzowanych magazynach. Musimy jednak pamiętać, że mamy tutaj do czynienia z przełomem naukowym, jednak do wykorzystania energii z fuzji jądrowej droga jeszcze daleka.
      Obecnie potrafimy uzyskiwać energię w elektrowniach atomowych z rozpadu cięższych atomów na lżejsze. Elektrownie atomowe to ekologiczne i stabilne źródło energii, jednak wytwarzają wysoce radioaktywne odpady, które pozostają radioaktywne przez setki i tysiące lat, ponadto opierają się na ograniczonych zasobach paliwa. Wedle różnych szacunków paliwa do nich wystarczy na od 90 do ponad 130 lat.
      Fuzja jądrowa pozbawiona jest tych wad. Polega ona na łączeniu dwóch izotopów wodoru – zwykle deuteru i trytu – w cięższy hel. Powstają przy tym co prawda odpady promieniotwórcze, ale ich promieniotwórczość jest stosunkowo niska i przestają one sprawiać problem w ciągu kilkudziesięciu lat. Ponadto dysponujemy praktycznie nieograniczonymi zasobami wodoru. Dlatego też od dziesiątków lat naukowcy pracują nad opanowaniem fuzji jądrowej i uzyskaniu z niej zysku energetycznego netto. Dotychczas się to nie udało.
      W grudniu ubiegłego roku naukowcy z National Ignition Facility poinfomrowali o uzyskaniu z fuzji jądrowej większej ilości energii niż została wprowadzona do kapsułki z paliwem w celu rozpoczęcia reakcji. Było to ważne wydarzenie z naukowego punktu widzenia. Jednak nie z praktycznego. Ilość energii potrzebna do przeprowadzenia eksperymentu była bowiem co najmniej 100-krotnie większa, niż ilość energii uzyskanej. Teraz ten sam zespół uzyskał więcej energii niż w grudniu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Fuzja jądrowa może stać się niewyczerpanym źródłem taniej bezpiecznej i ekologicznej energii. Od jej zastosowania dzielą nas dziesięciolecia, ale naukowcy powoli dokonują małych kroków w stronę jej realizacji. W ubiegłym roku w National Ignition Facility uzyskano więcej energii niż wprowadzono do kapsułki z paliwem. Teraz naukowcy poinformowali o udanym teście dynamicznego formowania kapsułek paliwowych wykorzystywanych przy inercyjnym uwięzieniu plazmy. Nowe kapsułki są tańsze i łatwiejsze w produkcji.
      Stosowane w National Ignition Facility (NIF) inercyjne uwięzienie plazmy polega na oświetleniu potężnymi laserami niewielkiej kapsułki zawierającej izotopy wodoru – deuter i tryt. W wyniku oddziaływania laserów kapsułka jest ściskana olbrzymim ciśnieniem i podgrzewana do wysokich temperatur. W końcu jej osłonka zapada się, dochodzi do zapłonu paliwa i zapoczątkowania fuzji jądrowej. Hipotetyczna elektrownia fuzyjna, działająca w ten sposób, zużywałaby około miliona kapsułek z paliwem dziennie. A obecne metody ich formowania, podczas których stosuje się zamrażanie oraz warstwę kriogeniczną, są bardzo kosztowne i skomplikowane.
      Przed dwoma laty Valeri Goncharov z Laboratory for Laser Energetics na University of Rochester opisał nową metodą formowania kapsułek z paliwem. Teraz, wraz z Igorem Igumenshchevem i innymi naukowcami, przeprowadził eksperyment, podczas którego dowiódł, że opisana metoda rzeczywiście działa.
      W procesie dynamicznego formowania kapsułki krople deuteru i trytu są wstrzykiwane w piankową osłonkę. Gdy taka kapsułka zostanie poddana działaniu laserów, najpierw tworzy się sferyczna osłonka, która następnie ulega implozji, zapada się i dochodzi do zapłonu. Taka metoda produkcji jest łatwiejsza i tańsza niż dotychczas stosowana. Szczegóły eksperymentu zostały opisane na łamach Physical Review Letters.
      Wykorzystanie nowych kapsułek do zainicjowania fuzji będzie wymagało prac nad laserami o dłuższym i silniejszym impulsie, jednak przeprowadzony eksperyment wskazuje, że może być to właściwe rozwiązanie na drodze ku praktycznym elektrowniom fuzyjnym.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...