Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Antybiotyki podawane noworodkom mogą zaburzać pracę ich jelit w dorosłym życiu

Rekomendowane odpowiedzi

Wcześniaki i dzieci o niskiej wadze urodzeniowej standardowo otrzymują antybiotyki. Mają one zapobiegać infekcjom, na które takie dzieci są bardzo narażone. Jednak, jak donoszą uczeni z University of Melbourne, podawanie antybiotyków na wczesnym etapie życia może negatywnie odbijać się na życiu dorosłym. Uczeni zauważyli, że u nowo narodzonych myszy, ma to długotrwałe skutki dla mikrobiomu, jelitowego układu nerwowego i funkcjonowania jelit.

Zwierzęta, którym podawano antybiotyki już od pierwszych godzin życia miały później zaburzone funkcje układu pokarmowego, w tym ruchomość jelit, a w życiu dorosłym cierpiały na objawy przypominające biegunki.

W artykule Neonatal antibiotics have long term sex-dependent effects on the enteric nervous system opublikowanym na łamach The Journal of Physiology czytamy: Na całym świecie niemowlęta i małe dzieci są wystawiona na działanie największych dawek antybiotyków. Mamy coraz więcej dowodów na to, że wczesne wystawienie na te leki prowadzi do późniejszej podatności na wiele chorób, w tym na zaburzenia pracy jelit, jednak dotychczas nie był jasny wpływ antybiotyków na fizjologię jelit i jelitowy układ nerwowy.

Dlatego też naukowcy przez 10 dni po urodzeniu podawali myszom wankomycynę, a po 6 tygodniach, gdy myszy były w wieku młodych dorosłych, sprawdzali, jaki miało to wpływ na ich okrężnicę. Odkryliśmy, że wankomycyna w różny sposób zaburzyła funkcjonowanie jelit u samic i samców. W przypadku samic doszło do znaczne wydłużenia czasu przechodzenia pokarmu przez jelita w porównaniu z grupą kontrolną, a u samców znacząco zmniejszyła się ilość wydalanych odchodów. U obu płci odchody miały też wyższy odsetek wody, co jest objawem podobnym do biegunki.

Uczeni zauważyli też, zależne od płci, różnice w składzie chemicznym i aktywności Ca2+ w neuronach splotu błony mięśniowej (splocie Auerbacha), które biorą udział w kontroli motoryki jelit oraz w neuronach błony podśluzowej, umożliwiającej przesuwalność błony śluzowej układu pokarmowego względem podłoża. U samców neurony splotu błony mięśniowej zostały bardziej uszkodzone przez antybiotyk niż u samic. U obu płci zauważono przeciwstawne sobie zmiany w neuronach błony podśluzowej.

Wankomycyna doprowadziła też do znacznych zmian w mikrobiomie okrężnicy i pozbawiła ją części receptorów serotoninowych, odgrywających ważną rolę w ruchach perystaltycznych. To pierwsze badania, podczas których wykazano długotrwałe skutki podawania noworodkom antybiotyków na jelitowy układ nerwowy, mikrobiom i receptory serotoninowe.

Uczeni już planują dalsze badania, podczas których chcą dokładnie poznać mechanizm działania antybiotyków na układ pokarmowy u obu płci. Chcą się tez dowiedzieć, czy wczesne podawanie antybiotyków ma wpływ na metabolizm i funkcjonowanie mózgu w późniejszym życiu.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Aby badania naukowe miały sens należałoby jeszcze zacząć się posługiwać sensownymi i precyzyjnymi kategoriami pojęciowymi, bo "antybiotyki" takowymi nie są.
Na początek radziłbym wydzielić związki chemiczne atakujące (w różny sposób) DNA a dopiero potem bawić się w wyciąganie wniosków.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
4 godziny temu, peceed napisał:

Aby badania naukowe miały sens należałoby jeszcze zacząć się posługiwać sensownymi i precyzyjnymi kategoriami pojęciowymi, bo "antybiotyki" takowymi nie są.

Antybiotyki mają jasną definicje, więc musisz rozjaśnić swój dylemat.

4 godziny temu, peceed napisał:

Na początek radziłbym wydzielić związki chemiczne atakujące (w różny sposób) DNA

Tu też ciemno: atakujące DNA gospodarza, czy DNA mikrobioty?

Edytowane przez 3grosze

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
17 godzin temu, 3grosze napisał:

Tu też ciemno: atakujące DNA gospodarza, czy DNA mikrobioty?

Zawsze atakują gospodarza.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

 Zastosowana w doświadczeniu wankomycyna psuje ściany komórkowe bakterii i coś tam miesza w ich syntezie RNA. Oddziaływanie wankomycyny na DNA organizmów kręgowców czekało na swojego odkrywcę.

@peceed gratuluję.:)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Raz w życiu kojarzę że miałem grypę z którą jakoś nie mogłem sobie poradzić. Dostałem antybiotyki. Grypa faktycznie przeszła ale od razu miałem nieprzyjemne skutki dla jelit i dodatkowo przez lata później obniżoną odporność.
Więc jeśli mocny i silny organizm tak może być wyniszczony to co tu mówić o noworodku - wprawdzie dzieciaki szybko się regenerują ale jednak są też słabsze.
Teraz już lekarze trochę odpuścili antybiotyki ale parę lat temu antybiotyk to była podstawa leczenia przez lekarza pierwszego kontaktu.
Lekarz to nie naukowiec - nie bada tylko jak w każdym zawodzie - chce mieć szybko sprawę z głowy.

Edytowane przez thikim

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Sepsa dotyka niemal 3 milionów noworodków rocznie i zabija 214 000 z nich. Badania obserwacyjne, przeprowadzone pod kierunkiem naukowców z University College London (UCL) wykazały, że wiele noworodków umiera z powodu sepsy, ponieważ stosowane do jej zwalczania antybiotyki tracą efektywność. Badania przeprowadzono w latach 2018–2020 na 3200 noworodkach u których wystąpiła sepsa.
      Naukowcy przyjrzeli się dzieciom z 19 szpitali w 11 krajach. Okazuje się, że wśród tych przypadków, gdzie zidentyfikowano patogen odpowiedzialny za sepsę, odsetek zgonów wynosił 18% i był powodowany w dużej mierze antybiotykoopornością. Tam, gdzie patogenu nie zidentyfikowano, odsetek zgonów wynosił 10%.
      W badaniach wzięło udział ponad 80 specjalistów z całego świata, a ich celem było udoskonalenie zaleceń WHO odnośnie leczenia sepsy u noworodków. Organizmy ewoluują, zmienia się lekooporność. Dlatego też zalecenia kliniczne dotyczące sepsy noworodków wymagają ciągłych zmian. Nasze zalecenia opierają się na najnowszych dowodach dobrej jakości i są znaczącym krokiem w kierunku poprawy metod leczenia, mówi doktor Wolfgang Stöhr z UCL.
      Podjęcie tych badań było bardzo ważne, gdyż pomagają nam one zrozumieć, jakie rodzaje infekcji dotyczą noworodków w szpitalach, jaki organizm je wywołuje, jakie leczenie jest stosowane i dlaczego rośnie liczba zgonów, dodaje doktor Manica Balasegaram, dyrektor w Global Antibiotic Research and Development Partnership (GARDP).
      Autorzy badań odnotowali olbrzymie różnice w odsetku zgonów pomiędzy poszczególnymi szpitalami. W poszczególnych placówkach umierało od 1,6% do 27,3% zarażonych sepsą noworodków. Wyższy odsetek zgonów zauważono w krajach o niskich i średnich dochodach. Badania prowadzono w szpitalach w Chinach, Bangladeszu, Brazylii, Wietnamie, Ugandzie, Grecji, Tajlandii, RPA, Włoszech, Indiach i Kenii.
      Jasno pokazały one, że wiele z nich to infekcje antybiotykooporne, szczególnie w krajach o niskich i średnich dochodach, które często zmagają się z niedoborem pielęgniarek, łóżek i przestrzeni. Ryzyko infekcji jest bardzo wysokie i większość z nich to infekcje antybiotykooporne. Jeśli antybiotyki nie zadziałają, dziecko często umiera. Potrzebna jest tutaj pilna zmiana. Potrzebujemy antybiotyków radzących sobie ze wszystkimi infekcjami bakteryjnymi, mówi profesor Sithembiso Velaphi, ordynator oddziału pediatrycznego w Chris Hani Baragwanath Academic Hospital w Johannesburgu.
      W badanych szpitalach do walki z sepsą wykorzystywano łącznie ponad 200 różnych połączeń antybiotyków i często je zmieniano z powodu oporności bakterii na leczenie. W wielu przypadkach lekarze byli zmuszeni użyć karbapenemów. To antybiotyki ostatniej szansy, co do których WHO zaleca używanie ich trudnych, szczególnych przypadkach po to, by nie zabrakło ich właśnie w takich szczególnych sytuacjach. Często jednak były to jedyne antybiotyki zdolne do zwalczenia infekcji. Antybiotyki ostatniej szansy były przepisywane w 15% zbadanych przypadków. Z kolei najczęściej identyfikowanym patogenem była Klebsiella pneumoniae, bakteria łączona z zakażeniami wewnątrzszpitalnymi. Obok niej sepsę często powodowały Acinetobacter spp.,  Staphylococcus aureus. Wymienione patogeny były często oporne na działanie antybiotyków.
      Na podstawie przeprowadzonych badań ich autorzy opracowali dwa narzędzia, które mogą być wykorzystywane na oddziałach opieki neonatologicznej. Pierwsze z nich to NeoSep Severity Score, bazujący na 10 objawach, który pozwala zidentyfikować dzieci szczególnie narażone na zgon, którymi należy zająć się w pierwszej kolejności. Drugi zaś, NeoSep Recovery Score, opierający się na tych samych objawach, za pomocą którego lekarze mogą zdecydować, czy należy rozszerzyć leczenie.
      Antybiotykooporność stanowi coraz większy problem dla całego świata. Niejednokrotnie już poruszaliśmy ten temat.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Osoby cierpiące na zespół chronicznego zmęczenia (ME/CFS) mają inny mikrobiom jelit niż osoby zdrowe, informują naukowcy z Columbia University. Odkrycie to może wskazywać na potencjalną przyczynę choroby oraz pomóc w opracowaniu metod jej leczenia.
      Zespół chronicznego zmęczenia charakteryzuje się między innymi ciągłym zmęczeniem, zaburzeniami funkcji poznawczych, zaburzeniami pracy układu pokarmowego. Przyczyny ME/CFS nie są znane, ale wielu pacjentów informuje, że wcześniej przeszło chorobę zakaźną. Istnienie związku pomiędzy wystąpieniem infekcji, a pojawieniem się ME/CFS wydają się potwierdzać przeprowadzone w ciągu ostatnich miesięcy obserwacje wskazujące, że w wyniku tzw. długiego COVID mogą pojawić się objawy podobne do zespołu chronicznego zmęczenia.
      Naukowcy z Columbia University przeprowadzili analizy metagenomiczne i metabolomiczne próbek kału 106 osób cierpiących na zespół chronicznego zmęczenia i porównali je z analizami próbek 91 zdrowych osób. Wykazali w ten sposób, że istnieją różnice w składzie ilościowym, różnorodności, szlakach biologicznych i interakcji pomiędzy bakteriami. Różnice te są na tyle istotne, że mogą służyć jako kryterium diagnostyczne ME/CFS.
      Okazało się na przykład, że bakterie z pożytecznych dla zdrowia gatunków Faecalibacterium prausnitzii i Eubacterium rectale, które obficie występują w kale osób zdrowych, charakteryzują się znacznie zredukowaną liczebnością u osób chorych. Mniejsza liczba tych bakterii wpływa zaś negatywnie na zdolność do syntetyzowania kwasu masłowego, który ma właściwości przeciwzapalne. Naukowcy zauważyli też, że im mniej w jelitach F. prausnitzii, tym poważniejsze objawy ME/CFS, co może sugerować istnienie bezpośredniego związku pomiędzy mikrobiomem a chorobą.
      Pomiędzy osobami zdrowymi a cierpiącymi na zespół chronicznego zmęczenia zauważono nie tylko różnice w liczbie bakterii. Naukowcy odkryli tez, że istnieją duże różnice w interakcji pomiędzy różnymi gatunkami bakterii tworzącymi mikrobiom.
      Mikrobiom jelit to złożona społeczność, w skład której wchodzą bardzo różne gatunki i dochodzi tam do różnych interakcji międzygatunkowych. Interakcje te mogą być korzystne lub szkodliwe. Nasze badania wykazały, że u osób z ME/CFS dochodzi do znacznej zmiany powiązań pomiędzy gatunkami bakterii tworzącymi ten system, mówi jeden z głównych autorów badań, profesor W. Ian Lipkin.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dwa syntetyczne słodziki, sacharyna i sukraloza, zwiększają poziom glukozy we krwi, informują autorzy najnowszych badań. To zaskakujące, gdyż nie spodziewano się, że słodziki działają w taki sposób. W tej chwili nie wiadomo jeszcze, jak i czy w ogóle, zaobserwowane zjawisko wpływa na nasz organizm. Wyniki zaskakujących badań zostały opublikowane w magazynie Cell.
      Badania przeprowadzone przez naukowców z izraelskiego Instytutu Weizmanna wskazują, że słodziki nie są tak neutralne, jak się wydawało. Okazało się bowiem, że zmieniają one działanie mikrobiomu w taki sposób, który może prowadzić do zwiększenia poziomu glukozy we krwi. Co więcej, wpływ słodzików na organizm może być bardzo różny u różnych ludzi.
      Już 8 lat temu naukowcy z Instytutu Weizmanna zauważyli, że u myszy niektóre słodziki mogą prowadzić do zmian w metabolizmie cukru. Zagadnienie to postanowił zgłębić profesor Eran Elinav z Wydziału Immunologii. Naukowcy najpierw dokładnie przyjrzeli się niemal 1400 potencjalnym uczestnikom badań i wybrali wśród nich 120 osób, które całkowicie unikały napojów i żywności zawierających sztuczne słodziki. Osoby te zostały podzielone na 6 grup. Uczestnicy 4 grup otrzymali jeden rodzaj słodzika: sacharynę, sukralozę, aspartam i stewię. Słodziki były zapakowane w saszetkach, a w każdej z nich była mniej niż dzienna dopuszczalna dawka. Dwie pozostałe grupy, z których jedna otrzymała analogiczne saszetki z glukozą, a druga nie dostała żadnego suplementu, służyły jako grupy kontrolne.
      Każdy z uczestników miał dziennie zużyć jedną saszetkę, o ile ją otrzymał. Po dwóch tygodniach okazało się, że u wszystkich osób, które spożywały słodziki, doszło do zmiany składu i funkcjonowania mikrobiomu. Dla każdego ze słodzików zmiany były inne. Okazało się również, że w grupach przyjmujących sacharynę i sukralozę doszło do znacznej zmiany metabolizmu glukozy. Zmiany takie mogą zaś prowadzić do chorób metabolicznych. Natomiast w grupach kontrolnych nie zauważono ani zmian składu czy funkcjonowania mikrobiomu, ani zmian tolerancji glukozy.
      Co więcej, zmiany zaobserwowane w mikrobiomie były ściśle skorelowane ze zmianami w metabolizmie glukozy. Nasze odkrycie potwierdza, że mikrobiom to specyficzne miejsce integrujące sygnały pochodzące z organizmu oraz sygnały zewnętrzne, pochodzące np. z żywności, leków, naszego stylu życia i otoczenia, mówi profesor Elinav.
      Naukowcy postanowili też sprawdzić, czy rzeczywiście zmiany w mikrobiomie spowodowały problemy z tolerancją glukozy. Dlatego też dokonali przeszczepu mikrobiomu od ludzi do myszy, które nigdy nie spożywały sztucznych słodzików. Przeszczepu dokonano od osób, u których zmiany były największe i od tych, u których były najmniejsze. Okazało się, że wzorce zmian tolerancji glukozy zaobserwowane u myszy odzwierciedlały to, co obserwowano u ludzi. Zwierzęta, które otrzymały mikrobiom od osób, u których pojawiła się największa nietolerancja glukozy, wykazywały większą nietolerancję niż myszy, którym przeszczepiono mikrobiom osób z mniejszą nietolerancją.
      Nasze badania wykazały, że słodziki mogą upośledzać tolerancję glukozy poprzez wpływ na mikrobiom i jest to reakcja wysoce spersonalizowana, która każdego może dotykać inaczej. Tak naprawdę można się było spodziewać tak różnych reakcji, gdyż mikrobiom każdego z nas jest unikatowy, stwierdza Elinav.
      Naukowcy podkreślają, że w tej chwili nie wiadomo, czy i jakie skutki dla naszego zdrowia niesie ze sobą zaobserwowane zjawisko. Sprawdzenie tego będzie wymagało długoterminowych badań. W międzyczasie musimy podkreślić, że z naszych badań nie wynika, iż konsumpcja cukru – którego szkodliwe skutki zdrowotne wielokrotnie zostały wykazane – jest lepsza niż spożywanie sztucznych słodzików, zauważa profesor Elinav.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Naukowcy z Królewskich Ogrodów Botanicznych w Kew opisali na łamach Philosophical Transactions of The Royal Society B, w jaki sposób trzmiele aktywują lecznicze właściwości nektarów roślinnych. W badaniach, którymi kierowała doktor Hauke Koch, pomagał im profesor Mark Brow z Royal Holloway, University of London. Naukowcy zebrali nektar oraz pyłek z lipy i chruściny jagodnej by sprawdzić, jak znajdujące się w nich związki są przetwarzane przez trzmiele. Odkryli, że dwa związki występujące w nektarach tych gatunków są aktywowane w przewodzie pokarmowym owadów.
      Głównym celem badań było stwierdzenie, w jaki sposób nektar i zawarte w nim związki chronią trzmiele przed rozpowszechnionym pasożytem układu pokarmowego, pierwotniakiem Crithidia bombi. Mają nadzieję, że to, czego się dowiedzą, uda się wykorzystać w działaniach mających na celu ochronę zapylaczy. Zapylanie roślin to jedna z najważniejszych ról, jakie mają do spełnienia owady. Tymczasem liczba owadów spada, a przyczyniają się do tego m.in. choroby pasożytnicze.
      Poważnym problemem są tutaj pasożyty pszczoły miodnej. Ludzie, przewożący pszczoły na duże odległości, przenoszą bowiem wraz z nimi pasożyty, które w ten sposób trafiają do nowego środowiska. I mogą przejść z pszczół miodnych na gatunki dzikie. Sytuację dodatkowo pogarsza powszechne stosowanie środków chemicznych w rolnictwie. Środki te negatywnie wpływają m.in. na zdrowie układu pokarmowego zapylaczy, osłabiając ich mikrobiom, co ułatwia zadanie pasożytom.
      Naukowców szczególnie interesuje C. bombi, gdyż coraz więcej dowodów wskazuje na to, że ten szeroko rozpowszechniony pasożyt niekorzystnie wpływa na przetrwanie i rozwój kolonii trzmieli.
      Zapylacze mają bardzo zróżnicowany mikrobiom przewodu pokarmowego oraz środowisko gniazdowania. Mikroorganizmy mogą odgrywać olbrzymią rolę w utrzymaniu zdrowia zapylaczy, chroniąc ich przed chorobami i dostarczając składników odżywczych. Im lepiej zrozumiemy znaczenie poszczególnych mikroorganizmów wchodzących w skład mikrobiomu, tym lepiej będziemy mogli pomóc zapylaczom. Na przykład kolonie pszczoły miodnej czy trzmieli mogą być wspierane za pomocą probiotyków, a dzikie kolonie można wspierać zakazując stosowania pestycydów, które mają negatywny wpływ na ich mikrobiom oraz poprzez zapewnianie im dostępu do roślin, których nektar czy pyłek zapewniają zdrowie mikrobiomu, mówi doktor Koch.
      Naukowcy najpierw wzięli na warsztat pyłek i nektar z chruściny jagodnej. Okazało się, że zawarty w nich związek chroni trzmiele przed infekcją C. bombi, ale tylko po tym, jak wejdą w kontakt z ich mikrobiomem. Sam proces trawienny prowadzi bowiem do jego dezaktywacji. Uczeni odkryli również, że i w nektarze lipy znajduje się pożyteczny związek. Jednak ten związek jest aktywowany nie przez mikrobiom, ale przez same procesy trawienne.
      Od dziesięcioleci zbieramy kolejne dowody pokazujące, że działania człowieka, takie jak nadmierne używanie pestycydów, zmiany klimatyczne, coraz bardziej intensywne rolnictwo negatywnie wpływają na zdrowie zapylaczy i przyczyniają się do spadku ich liczby. Musimy teraz poszukać rozwiązań, pozwalających na utrzymanie zróżnicowanych i zdrowych populacji zapylaczy i innych owadów. Wiele z takich rozwiązań jesteśmy w stanie znaleźć tylko wówczas, gdy lepiej zrozumiemy procesy wpływające na zdrowie owadów, dodaje profesor Phil Stevenson z Ogrodów w Kew.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Specjaliści od dawna poszukują bezpośredniego związku pomiędzy aktywnością neuronów w mózgu, a aktywnością bakterii w układzie pokarmowym. Francuscy uczeni z Instytutu Pasteura poinformowali właśnie na łamach Science, że w modelu zwierzęcym neurony w podwzgórzu bezpośrednio wykrywają zmiany aktywności bakterii w jelitach i odpowiednio dostosowują do tego apetyt i temperaturę ciała myszy. To dowodzi, że istnieje bezpośrednia komunikacja pomiędzy mikrobiomem jelit a mózgiem. Być może uda się to wykorzystać do opracowania metod walki z cukrzycą czy otyłością.
      Związki uwalniane przez mikrobiom trafiają do krwi i mogą wpływać na różne procesy fizjologiczne gospodarza, takie jak działanie układu odpornościowego, metabolizm czy funkcje mózgu. Metabolity mikroorganizmów, w tym krótkołańcuchowe kwasy tłuszczowe i pochodne tryptofanu, regulują bardzo wiele procesów. Składowe strukturalne mikroorganizmów są jednak wykrywane przez receptory wykrywające wzorce (PRR), które sygnalizują obecność wirusów, bakterii i grzybów na błonach śluzowych, w tkankach i komórkach. Wiemy, że składniki bakteryjne wpływają na działanie mózgu, a PRR są powiązane z zaburzeniami jego pracy. Jednak nie wiemy, czy neurony w mózgu mogą bezpośrednio wykrywać komponenty bakteryjne i czy bakterie mogą regulować procesy fizjologiczne poprzez regulowanie neuronów w mózgu, stwierdzają autorzy badań.
      Naukowcy skupili się na receptorze NOD2 obecnym w komórkach odpornościowych. Należy on do grupy rozpoznających wzorce receptorów wewnątrzkomórkowych. Receptor ten wykrywa muropeptydy wchodzące w skład ścian komórkowych bakterii. Wiadomo, że u myszy, w neuronach których nie dochodzi do ekspresji Nod2, pojawiają się zmiany odnośnie spożywania pokarmu, zakładania gniazda i temperatury ciała. Naukowcy wykorzystali więc techniki obrazowania, by zidentyfikować te obszary mózgu, które reagują na doustne podawanie muropeptydów. Sprawdzali też, jak zmieniała się aktywność neuronów po podaniu myszom muropeptydów. Stworzyli też genetycznie zmodyfikowane myszy, w których podwzgórzach nie dochodziło do ekspresji Nod2. To właśnie podwzgórze reguluje temperaturę ciała i przyjmowanie pokarmów.
      Na podstawie tak prowadzonych eksperymentów stwierdzili, że do ekspresji receptora NOD2 dochodzi w różnych regionach mózgu myszy, w szczególności zaś w podwzgórzu. A w kontakcie z muropeptydami ekspresja ta jest tłumiona.
      Muropeptydy obecne w jelitach, krwi i mózgu to dowody na proliferację bakterii. To niezwykłe odkrycie pokazuje, że fragmenty bakterii bezpośrednio wpływają na tak ważny ośrodek w mózgu, jakim jest podwzgórze, o którym wiemy, że reguluje kluczowe funkcje organizmu, jak temperatura, reprodukcja, głód i pragnienie, stwierdzają naukowcy.
      Uczeni mają nadzieję, że dzięki zdobytej wiedzy i przyszłym interdyscyplinarnym badaniom – w które powinni zostać zaangażowani neurolodzy, immunolodzy i mikrobiolodzy – powstaną w przyszłości nowe leki skuteczniej zwalczające takie zaburzenia metaboliczne jak otyłość i cukrzyca.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...