Jump to content
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Wrodzony powab protonu może przysporzyć kłopotów astronomom

Recommended Posts

Czy neutrinowe oczy ludzkości, obserwatoria takie jak IceCube na Antarktydzie, naprawdę widzą neutrina napływające z głębi kosmosu? Odpowiedź zaczynają przynosić między innymi eksperymenty przy akceleratorze LHC, gdzie bada się wewnętrzną strukturę protonów. Zgodnie z najnowszym modelem, opracowanym przez fizyków z IFJ PAN, struktura ta wydaje się być bogatsza o cząstki powabne w stopniu, który ziemskim obserwatorom neutrin może utrudnić interpretację tego, co widzą.

Wbrew popularnym wyobrażeniom, proton może się składać nie z trzech, ale nawet z pięciu kwarków. Dodatkową parę tworzą wtedy kwark i antykwark powstałe w interakcjach gluonów we wnętrzu protonu. Od dawna przypuszczano, że te „nadmiarowe” pary mogą niekiedy być zbudowane nawet z tak masywnych kwarków i antykwarków jak powabne. Teraz się okazuje, że uwzględnienie wewnętrznego powabu protonów pozwala dokładniej opisać przebieg zjawisk zarejestrowanych niedawno w jednym z niskoenergetycznych eksperymentów w detektorze LHCb przy Wielkim Zderzaczu Hadronów. Stosowny model teoretyczny zaprezentowali fizycy z Instytutu Fizyki Jądrowej Polskiej Akademii Nauk (IFJ PAN) w Krakowie na łamach czasopisma „Physical Review D”.

Szkolne podręczniki malują obraz protonu jako cząstki będącej prostym zlepkiem trzech kwarków: dwóch górnych oraz jednego dolnego, sklejonych oddziaływaniami silnymi przenoszonymi przez gluony. W fizyce tak uproszczony model nie zrobił długiej kariery. Już w końcu lat 80. ubiegłego wieku okazało się, że aby wytłumaczyć obserwowane zjawiska trzeba uwzględnić lekkie kwarki pochodzące z chmury mezonowej w nukleonie (są to tzw. wyższe stany Flocka). Co zaskakujące, efekt wcale nie jest marginalny: może stanowić nawet poprawkę na poziomie 30% w stosunku do prostego modelu trzykwarkowego. Niestety, dotychczas nie potrafiono określić, jak duży jest analogiczny wkład kwarków powabnych.

Nasze wcześniejsze modele powstawania powabu wielokrotnie wykazywały się zgodnością z eksperymentami. Przy dużych energiach zderzeń protonów, gdy w LHC wzajemnym oddziaływaniom poddawano ich dwie przeciwbieżne wiązki, potrafiliśmy całkiem dobrze opisać produkcję par z udziałem kwarków i antykwarków powabnych. Rzecz jednak w tym, że choć tworzyły się one w trakcie zderzeń protonów, nie pochodziły z ich wnętrz. Powstawały wskutek fuzji gluonów nieco wcześniej wyemitowanych przez protony, mówi prof. dr hab. Antoni Szczurek (IFJ PAN).

Nadzieję na postęp w tropieniu powabu wewnątrz samych protonów przyniosły niedawne pomiary zrealizowane w detektorze LHCb z użyciem pojedynczej wiązki protonów, wycelowanej w nieruchomą, gazową tarczę z helu bądź argonu.

Gdy w LHC dochodzi do zderzeń przy największych energiach, spora część cząstek będących produktami kolizji protonów porusza się w kierunku 'do przodu', wzdłuż wiązek protonów. W rezultacie trafiają w obszar, gdzie z przyczyn technicznych nie ma detektorów. Tymczasem zderzenia protonów z jądrami helu, które właśnie poddaliśmy analizie, zachodziły przy energiach nawet kilkadziesiąt razy mniejszych od maksymalnych osiąganych przez LHC. Produkty zderzeń rozbiegały się pod większymi kątami, bardziej na boki, w konsekwencji były rejestrowane w detektorach i mogliśmy się im przyjrzeć, wyjaśnia dr Rafał Maciuła (IFJ PAN).

Do opisu danych z eksperymentu w detektorze LHCb krakowscy fizycy użyli modelu rozbudowanego o możliwość wybicia z wnętrza protonu kwarku lub antykwarku powabnego. Wyliczenie prawdopodobieństwa takiego procesu z zasad pierwszych nie było możliwe. Badacze postanowili więc sprawdzić, przy jakich wartościach prawdopodobieństwa zgodność przewidywań modelu z zarejestrowanymi danymi będzie największa. Otrzymany wynik sugerował, że wkład par powabnych we wnętrzu protonu nie jest większy niż około 1%.

Po wybiciu z wnętrza protonu powabna para kwark-antykwark szybko się zmienia w krótkożyjące mezony i antymezony D0, te zaś produkują kolejne cząstki, w tym neutrina. Fakt ten zainspirował fizyków z IFJ PAN do skonfrontowania nowego modelu z danymi zarejestrowanymi przez obserwatorium neutrinowe IceCube na Antarktydzie.

Obecnie dzięki stosowanym technikom naukowcy z IceCube mają pewność, że jeśli rejestrują neutrino o ogromnej energii (rzędu setek teraelektronowoltów), to oznacza, że cząstka pochodziła z głębi kosmosu. Przyjmuje się ponadto, że neutrina o nieco niższych, ale wciąż rzadko spotykanych dużych energiach, również mają naturę kosmogeniczną. Jeśli jednak z wnętrza protonu można wybić powabną parę kwark-antykwark, rozpadającą się w kaskadzie zawierającej wysokoenergetyczne neutrina, ta interpretacja może zostać podważona. Neutrina w pewnym zakresie energetycznym, rejestrowane obecnie, mogą bowiem pochodzić nie z kosmosu, ale właśnie z kaskad inicjowanych zderzeniami cząstek pierwotnego promieniowania kosmicznego z jądrami gazów atmosferycznych. Artykuł analizujący taką możliwość trafił do druku w czasopiśmie „European Physical Journal C”.

Przy analizie danych z obserwatorium IceCube przyjęliśmy następującą taktykę. Przyjmijmy, że praktycznie wszystkie obecnie rejestrowane neutrina w badanym przez nas zakresie energetycznym pochodzą z atmosfery. Jaki musiałby być wkład powabnych par kwark-antykwark we wnętrzu protonu, abyśmy za pomocą naszego modelu uzyskali zgodność z dotychczasowymi pomiarami? Proszę sobie wyobrazić, że otrzymaliśmy wartość rzędu jednego procenta, praktycznie identyczną z wartością z modelu opisującego zderzenia proton-hel w detektorze LHCb!, mówi dr Maciuła.

Zbieżność oszacowań dla obu omówionych przypadków nakazuje zachować dużą ostrożność w określaniu źródeł neutrin rejestrowanych przez współczesne obserwatoria. Krakowscy badacze podkreślają jednak, że ich wyniki nakładają tylko górne ograniczenie na wkład kwarków i antykwarków powabnych w strukturę protonu. Jeśli okaże się on mniejszy, przynajmniej część obecnie wykrywanych neutrin o wielkich energiach zachowa swoją kosmiczną naturę. Jeśli jednak górna granica będzie oszacowaniem poprawnym, nasza interpretacja źródeł ich pochodzenia będzie musiała ulec istotnej zmianie, a IceCube okaże się nie tylko obserwatorium astronomicznym, ale również... atmosferycznym.


« powrót do artykułu

Share this post


Link to post
Share on other sites
W dniu 25.03.2022 o 14:23, l_smolinski napisał:

Przecież to już dawno było zaproponowane:

Przecież to zupełnie inna bajka. Tu jest o fizyce, a podany przez Ciebie link nawiązuje do bajek z mchu i paproci.

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now

  • Similar Content

    • By KopalniaWiedzy.pl
      Przez 9 lat pracy instrumenty Daya Bay Reactor Neutrino Experiment zarejestrowały 5,5 miliona neutrin. Teraz międzynarodowy zespół pracujący przy eksperymencie poinformował o pierwszych wynikach uzyskanych na podstawie całego zbioru danych. A najważniejszym z nich są najbardziej precyzyjne pomiary theta 13 (θ13), kluczowego parametru potrzebnego nam do zrozumienia oscylacji neutrin.
      Neutrina to cząstki subatomowe, które wypełniają cały wszechświat, a które niezwykle trudno zauważyć. Co sekundę przez nasze ciała przelatują miliardy neutrin. Neutrino może przelecieć przez ścianę ołowiu o grubości roku świetlnego, nie zderzając się przy tym z żadnym atomem.
      Jednym z cech charakterystycznych neutrin jest oscylacja, czyli zmiana pomiędzy trzema zapachami: neutrino minowym, taonowym i elektronowym. Day Bay Reactor Neutrino Experiment zaprojektowano do badania parametrów określających, a jakim prawdopodobieństwem zajdzie oscylacja. Wśród parametrów tych znajdują się kąty mieszania. Gdy projektowano Daya Bay w rok 2007 nieznany pozostawał jeden z kątów mieszania, θ13. Dlatego właśnie eksperyment został zbudowany tak, by z bezprecedensową dokładnością określił ten właśnie parametr.
      Day Bay Reactor Neutrino Experiment znajduje się w Guangdongu w Chinach. Składa się z wielkich cylindrycznych wykrywaczy cząstek zanurzonych w wodzie, a znajdujących się w trzech podziemnych grotach. Osiem detektorów odpowiedzialnych jest za wykrywanie sygnałów z antyneutrin pochodzących z pobliskich reaktorów atomowych.
      Daya Bay projekt międzynarodowy i pierwszy tego typu wielki wspólny projekt fizyczny Chin i USA. Biorą w nich udział liczne instytucje naukowe, na czele których z chińskiej strony stoi Instytut Fizyki Wysokich Energii Chińskiej Akademii Nauk, a ze strony amerykańskiej Lawrence Berkeley National Laboratory oraz Brookhaven National Laboratory.
      W każdej z podziemnych grot Daya Bay wykrywa antyneutrina elektronowe. Dwie groty znajdują się w blisko reaktorów atomowych, a trzecia jest od nich sporo oddalona, co daje neutrinom czas na oscylacje. Naukowcy, porównując liczbę antyneutrin elektronowych, które dotarły do wykrywaczy położonych bliżej i dalej od reaktorów, mogą wyliczyć ile z nich zmieniło zapach, a z tego wyprowadzają wartość theta 13.
      W 2012 roku naukowcy pracujący przy Daya Bay ogłosili wyniki pierwszych powszechnie przyjętych pomiarów theta13. Od tego czasu ciągle uściślają swoje pomiary. W grudniu 2020 roku, po 9 latach pracy eksperymentu, zakończono zbieranie danych i zajęto się ich analizą. Okazało się, że Daya Bay znacznie przekroczył oczekiwania. Udało się bowiem zmierzyć wartość θ13 z 2,5-krotnie większą dokładnością, niż przyjęto w założeniach projektu. Żaden obecnie działający i planowany eksperyment nie powinien osiągnąć tak dużej precyzji.
      Liczne zespoły analityków wykonały benedyktyńską pracę szczegółowo analizując cały zestaw danych, biorąc pod uwagę zmiany wydajności czujników w czasie tych 9 lat pracy. Dane te posłużyły nam nie tylko do wyodrębnienia z nich antyneutrin, ale również do udoskonalenia naszej wiedzy o szumie w tle. To pozwoliło nam osiągnąć niezwykłą precyzję, mówi rzecznik prasowy eksperymenty, Jun Cao z Instytutu Fizyki Wysokich Energii.
      Dzięki precyzyjnym pomiarom θ13 naukowcy będą mogli łatwiej badań inne parametry neutrin oraz stworzyć dokładniejsze modele cząstek subatomowych i ich wzajemnego oddziaływania.
      Lepsze poznanie właściwości i oddziaływania antyneutrin może rzucić wiele światła na kwestię nierównowagi pomiędzy materią i antymaterią. Obecnie uważa się, że podczas Wielkiego Wybuchu powstało tyle samo materii i antymaterii. Jeśli jednak tak by się stało, to powinno dojść do całkowitej anihilacji, po której pozostałoby tylko światło. Musi więc istnieć coś, co spowodowało, że współczesny wszechświat składa się z materii. Być może tym czymś są jakieś różnice pomiędzy neutrinami a antyneutrinami. Nigdy nie wykryliśmy żadnych różnic pomiędzy cząstkami i antycząstkami w przypadku leptonów, do których należy neutrino. Znaleźliśmy jedynie różnice między kwarkami i antykwarkami. Jednak różnice te nie wystarczą, by wyjaśnić, dlaczego materia ma we wszechświecie taką przewagę. Może odpowiedź ukrywa się w neutrinach, mówi drugi z rzeczników eksperymentu, Kam-Biu Luk z Berkeley.
      Eksperymenty przyszłej generacji, takie jak DUNE (Deep Underground Neutrino Experiment) będą mogły wykorzystać pomiary wykonane przez Daya Bay do precyzyjnego porównania właściwości neutrin i antyneutrin. DUNE będzie najbardziej precyzyjnym wykrywaczem neutrin na świecie. Będzie on korzystał z budowanego właśnie najpotężniejszego na świecie źródła neutrin, PIP-II, w które zainwestowała Polska.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W uruchomionym ponownie po trzech latach Wielkim Zderzaczu Hadronów rozpoczęto nowe testy modelu, który ma wyjaśnić masę neutrina. Zgodnie z Modelem Standardowym te cząstki, których nie można podzielić na mniejsze składowe – jak kwarki czy elektrony – zyskują masę dzięki interakcji z polem bozonu Higgsa. Jednak neutrino jest tutaj wyjątkiem. Mechanizm interakcji z bozonem Higgsa nie wyjaśnia jego masy. Dlatego też fizycy badają alternatywne wyjaśnienia.
      Jeden z modeli teoretycznych – mechanizm huśtawki, seesaw model – mówi, że znane nam lekkie neutrino zyskuje masę poprzez stworzenie pary z hipotetycznym ciężkim neutrinem. Żeby jednak ten model działał, neutrina musiałyby być cząstkami Majorany, czyli swoimi własnymi antycząstkami.
      Naukowcy pracujący w Wielkim Zderzaczu Hadronów przy eksperymencie CMS postanowili mechanizm huśtawki, poszukując neutrin Majorany powstających w bardzo specyficznym procesie zwanym fuzją bozonów wektorowych. Przeanalizowali w tym celu dane z CMS z lat 2016–2018. Jeśli model huśtawki by działał, w danych z kolizji powinny być widoczne dwa miony o tym samym ładunku elektrycznym, dwa oddalone od siebie dżety cząstek o dużej masie oraz żadnego neutrino.
      Uczeni nie znaleźli żadnych śladów neutrin Majorany. To jednak nie znaczy, że ich praca poszła na marne. Udało im się bowiem ustalić nowy zakres parametrów, które określają zakres poszukiwań ciężkiego neutrino Majorany. Wcześniejsze analizy w LHC wskazywały, że ciężkie neutrino Majorany ma masę powyżej 650 GeV. Najnowsze badania wskazują zaś, że należy go szukać w przedziale od 2 do 25 TeV. Teraz naukowcy z CMS zapowiadają zebranie nowych danych i kolejne przetestowanie modelu huśtawki.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Amerykański Departament Energii dał zielone światło do rozpoczęcia budowy PIP-II. To projekt znaczącej rozbudowy kompleksu akceleratorowego znajdującego się w Fermilab. Po ukończeniu prac będzie to najpotężniejsze na świecie źródło wysokoenergetycznych neutrin. W przeszłości w Fermilab pracował legendarny Tevatron, urządzenie niezwykle zasłużone dla fizyki. Teraz laboratorium zyska kolejny wyjątkowy instrument badawczy.
      PIP-II będzie pierwszym w USA akceleratorem cząstek, w budowę którego znaczący wkład wniosą partnerzy międzynarodowi z Polski, Francji, Indii, Włoch i Wielkiej Brytanii. Dzięki ich współpracy powstanie urządzenie zdolne do generowania wiązek protonów o mocy przekraczającej 1 megawat. To o 60% więcej niż obecne możliwości Fermilab. Dzięki supernowoczesnym rozwiązaniom akcelerator będzie w stanie dostarczyć wiązkę o odpowiednich właściwościach dla różnego rodzaju eksperymentów fizycznych.
      Jednym z najważniejszych zadań PIP-II będzie dostarczanie neutrin dla Deep Underground Neutrino Experiment (DUNE). Akceleratory z Fermilab były siłą napędową eksperymentów, które w ciągu ostatnich 50 lat doprowadziły do znaczących przełomów w fizyce. Oficjalne rozpoczęcie budowy PIP-II oznacza, że jesteśmy o krok bliżej do rozbudowy naszych instalacji i wspierania odkryć naukowych przez kolejnych 50 lat, mówi były dyrektor Fermilab, Nigel Lockyer.
      W ramach projektu PIP-II na początku łańcucha akceleratorów znajdujących się w Fermilab powstanie unikatowa potężna elastyczna pierwsze sekcja, wykorzystująca najnowsze osiągnięcia z dziedziny nadprzewodnictwa, wysokoenergetycznych systemów radiowych, sztucznej inteligencji i maszynowego uczenia się. Całość ma pozwolić na szybkie automatyczne dopasowywanie parametrów wiązki do wymagań danego eksperymentu przy minimalnym udziale człowieka.
      PIP-II zostanie ukończony w drugiej połowie obecnej dekady. Prace nad niektórymi jego elementami już zbliżają się ku końcowi. Tak jest na przykład z budynkiem zawierającym elementy kriogeniczne. Ta część PIP-II to główny wkład Departamentu Energii Atomowej Indii. A w PIP-II Injector Test Facility przeprowadzono udane testy dwóch modułów kriogenicznych. To pokazuje, że Fermilab stanie się światowym liderem w dziedzinie wykorzystania akceleratorów do badań nad neutrinami, a PIP-II będzie znaczącym wkładem w ten sukces, stwierdziła Harriet King z DOE.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Badający neutrina fizycy z projektu MicroBooNE ogłosili, że udało im się ustalić przekrój czynny neutrino rozpraszanego na argonie. To niezwykle ważne wydarzenie, gdyż pozwoli na osiągnięcie zakładanych celów naukowych budowanemu właśnie olbrzymiemu wykrywaczowi neutrin DUNE (Deep Underground Neutrino Experiment).
      Neutrina to niewielkie cząstki subatomowe, które z jednej strony wstępują niezwykle powszechnie, z drugiej zaś – bardzo trudno jest je zarejestrować. Poruszają się z prędkością bliską prędkości światła, w każdej sekundzie miliardy tych cząstek bombardują Ziemię i nasze organizmy. Te cząstki są tak małe, że neutrino mogłoby przelecieć przez ołowianą ścianę grubości roku świetlnego, nie zderzając się przy tym z żadnym atomem. Ich zarejestrowanie jest więc niezwykle trudne, a ich zrozumienie może ujawnić nam wiele sekretów wszechświata.
      W ramach eksperymentu MicroBooNE prowadzonego w słynnym Fermi National Accelerator Laboratory (Fermilab) dane na temat neutrin gromadzone są od 2015 roku. Informacje te przydadzą się m.in. do skonstruowania eksperymentu DUNE. MicroBooNE i DUNE wykorzystują ciekłoargonowe komory projekcji czasowej (low-noise liquid-argon time projection chamber, LArTPC). To niezwykle skomplikowany wykrywacz, który rejestruje neutrina przelatujących przez zbiornik z ciekłym argonem o temperaturze -186 stopni Celsjusza. Neutrino jest rejestrowane, gdy wejdzie w interakcję z atomem argonu. MicroBooNE służy jako urządzenie testowe dla znacznie większego DUNE.
      DUNE będzie składał się z dwóch wykrywaczy neutrin. Jeden z nich będzie rejestrował interakcje neutrin w pobliżu źródła ich generowania. Źródłem tym będzie Main Injector w Fermilab. Niedaleko źródła znajdzie się pierwszy, mniejszy wykrywacz. Kolejny zaś jest budowany 1300 kilometrów dalej, w nieczynnej kopalni złota w miejscowości Lead w Dakocie Południowej. Powstaje tam gigantyczny zbiornik zawierający 40 000 ton ciekłego argonu. Urządzenia będą rejestrowały interakcje neutrin z atomami argonu. Jednak, aby naukowcy mogli wyciągnąć z uzyskanych danych odpowiednie wnioski, muszą jak najwięcej o tych interakcjach się dowiedzieć. Dlatego właśnie tak ważne są prace MicroBooNE.
      Najpowszechniej wykorzystywanymi tarczami w eksperymentach z neutrinami są żelazo, tlen (wchodzący w skład wody), węgiel (jako olej mineralny) i argon. Jako że komory LArTPC mają wiele zalet, naukowcy chcą jak najlepiej poznać interakcje argonu i neutrino.
      Przekrój czynny neutrino rozpraszanego na argonie pokazuje, jak argon reaguje na neutrino, z czym mamy do czynienia w MicroBooNE i DUNE. Naszym ostatecznym celem jest badanie neutrin, ale do tego potrzebujemy lepszego zrozumienia, w jaki sposób neutrina oddziałują z materiałem w wykrywaczach, takim jak np. atomy argonu, mówi Xin Qian z Brookhaven National Laboratory.
      Jednym z najważniejszych zadań stojących przed DUNE będzie badanie oscylacji neutrin pomiędzy neturino mionowym, elektronowym i taonowym. Naukowcy wiedzą, że oscylacje te zależą m.in. od energii neutrin. Ale określenie tej energii jest bardzo trudne. Zarówno dlatego, że same interakcje w jakie wchodzą neutrina są złożone, ale i w każdym strumieniu neutrin cząstki mają różną energię. Dopiero dokładne określenie przekroju czynnego w zależności od energii pozwoli na zdobycie najważniejszych informacji na temat oscylacji neutrin. Gdy poznamy przekrój czynny, będziemy mogli odwrócić obliczenia i – na podstawie olbrzymiej liczby interakcji – określić przeciętną energię, zapach i właściwości oscylacji neutrin, dodaje Wenquiang Gu, który stał na czele zespołu analityków z Brookhaven Lab.
      Ze szczegółami badań oraz uzyskanymi wynikami można zapoznać się na łamach Physical Review Letters.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Fizyk James Franson z University of Maryland opublikował w recenzowanym Journal of Physics artykuł, w którym twierdzi, że prędkość światła w próżni jest mniejsza niż sądzimy. Obecnie przyjmuje się, że w światło w próżni podróżuje ze stałą prędkością wynoszącą 299.792.458 metrów na sekundę. To niezwykle ważna wartość w nauce, gdyż odnosimy do niej wiele pomiarów dokonywanych w przestrzeni kosmicznej.
      Tymczasem Franson, opierając się na obserwacjach dotyczących supernowej SN 1987A uważa, że światło może podróżować wolniej.
      Jak wiadomo, z eksplozji SN 1987A dotarły do nas neutrina i fotony. Neutrina przybyły o kilka godzin wcześniej. Dotychczas wyjaśniano to faktem, że do emisji neutrin mogło dojść wcześniej, ponadto mają one ułatwione zadanie, gdyż cała przestrzeń jest praktycznie dla nich przezroczysta. Jednak Franson zastanawia się, czy światło nie przybyło później po prostu dlatego, że porusza się coraz wolniej. Do spowolnienia może, jego zdaniem, dochodzić wskutek zjawiska polaryzacji próżni. Wówczas to foton, na bardzo krótki czas, rozdziela się na pozyton i elektron, które ponownie łączą się w foton. Zmiana fotonu w parę cząstek i ich ponowna rekombinacja mogą, jak sądzi uczony, wywoływać zmiany w oddziaływaniu grawitacyjnym pomiędzy parami cząstek i przyczyniać się do spowolnienia ich ruchu. To spowolnienie jest niemal niezauważalne, jednak gdy w grę wchodzą olbrzymie odległości, liczone w setkach tysięcy lat świetlnych – a tak było w przypadku SN 1987A – do polaryzacji próżni może dojść wiele razy. Na tyle dużo, by opóźnić fotony o wspomniane kilka godzin.
      Jeśli Franson ma rację, to różnica taka będzie tym większa, im dalej od Ziemi położony jest badany obiekt. Na przykład w przypadku galaktyki Messier 81 znajdującej się od nas w odległości 12 milionów lat świetlnych światło może przybyć o 2 tygodnie później niż wynika z obecnych obliczeń.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...