Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Przy udziale polskich naukowców powstał prototyp kriomodułu dla potężnej „fabryki neutrin”

Recommended Posts

Technicy z Fermi National Accelerator Laboratory ukończyli prototyp specjalnego nadprzewodzącego kriomodułu, jedynego takiego urządzenia na świecie. Projekt PIP-II, w którym udział biorą też polscy naukowcy, ma na celu zbudowanie najpotężniejszego na świecie źródła neutrin. Zainwestowała w nie również Polska.

HB650 będzie najdłuższym i największym kriomodułem nowego akceleratora liniowego (linac). Wraz z trzema innymi będzie przyspieszał protony do 80% prędkości światła. Z linac protony trafią do dwóch kolejnych akceleratorów, tam zostaną dodatkowo przyspieszone i zamienione w strumień neutrin. Neturina te zostaną wysłane w 1300-kilometrową podróż przez skorupę ziemską, aż trafią do Deep Underground Neutrino Experiment and the Long Baseline Neutrino Facility w Lead w Dakocie Południowej.

Prace nad nowatorskim kriomodułem rozpoczęły się w 2018 roku, w 2020 jego projekt został ostatecznie zatwierdzony i rozpoczęła się produkcja podzespołów. W styczniu 2022 roku w Fermilab technicy zaczęli montować kriomoduł. HB650 to 10-metrowy cylinder o masie około 12,5 tony. Wewnątrz znajduje się szereg wnęk wyglądających jak połączone ze sobą puszki po napojach. Wnęki wykonano z nadprzewodzącego niobu, który podczas pracy będzie utrzymywany w temperaturze 2 kelwinów. W tak niskiej temperaturze niob staje się nadprzewodnikiem, co pozwala efektywnie przyspieszyć protony.

Żeby osiągnąć tak niską temperaturę wnęki będą zanurzone w ciekłym helu, nad którym znajdzie wiele warstw izolujących, w tym MLI, aluminium oraz warstwa próżni. Całość zamknięta jest w stalowej komorze próżniowej, która zabezpiecza wnęki przed wpływem pola magnetycznego Ziemi.

Linac będzie przyspieszał protony korzystając z pola elektrycznego o częstotliwości 650 MHz. Wnętrze wnęk musiało zostać utrzymane w niezwykle wysokiej czystości, gdyż po złożeniu urządzenia nie ma możliwości ich czyszczenia, a najmniejsze nawet zanieczyszczenie zakłóciłoby pracę akceleratora. Czystość musiała być tak wysoka, że nie wystarczyło, iż całość prac przeprowadzano w cleanroomie. Wszelkie przedmioty znajdujące się w cleanroomie oraz stosowane procedury były projektowane z myślą o utrzymaniu jak najwyższej czystości. Pracownicy nie mogli na przykład poruszać się zbyt szybko, by nie wzbijać w powietrze ewentualnych zanieczyszczeń.

Obecnie trwa schładzanie kriomodułu do temperatury 2 kelwinów. Naukowcy sprawdzają, czy całość wytrzyma. Nie bez powodu jest to prototyp. Chcemy dzięki niemu zidentyfikować wszelkie problemy, zobaczyć co do siebie nie pasuje, co nie działa, mówi Saravan Chandrasekaran z Fermilab. Po zakończeniu chłodzenia urządzenie zostanie poddane... testowi transportu. Kriomoduł trafi do Wielkiej Brytanii, a gdy wróci do Fermilab zostaną przeprowadzone testy, by upewnić się, że wszystko nadal działa.

Gdy HB650 przejdzie pomyślnie wszystkie testy, rozpocznie się budowa właściwego kriomodułu. Wezmą w nim udział partnerzy projektu PIP-II (Photon Improvement Plan-II) z Polski, Indii, Francji, Włoch, Wielkiej Brytanii i USA.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Przez 9 lat pracy instrumenty Daya Bay Reactor Neutrino Experiment zarejestrowały 5,5 miliona neutrin. Teraz międzynarodowy zespół pracujący przy eksperymencie poinformował o pierwszych wynikach uzyskanych na podstawie całego zbioru danych. A najważniejszym z nich są najbardziej precyzyjne pomiary theta 13 (θ13), kluczowego parametru potrzebnego nam do zrozumienia oscylacji neutrin.
      Neutrina to cząstki subatomowe, które wypełniają cały wszechświat, a które niezwykle trudno zauważyć. Co sekundę przez nasze ciała przelatują miliardy neutrin. Neutrino może przelecieć przez ścianę ołowiu o grubości roku świetlnego, nie zderzając się przy tym z żadnym atomem.
      Jednym z cech charakterystycznych neutrin jest oscylacja, czyli zmiana pomiędzy trzema zapachami: neutrino minowym, taonowym i elektronowym. Day Bay Reactor Neutrino Experiment zaprojektowano do badania parametrów określających, a jakim prawdopodobieństwem zajdzie oscylacja. Wśród parametrów tych znajdują się kąty mieszania. Gdy projektowano Daya Bay w rok 2007 nieznany pozostawał jeden z kątów mieszania, θ13. Dlatego właśnie eksperyment został zbudowany tak, by z bezprecedensową dokładnością określił ten właśnie parametr.
      Day Bay Reactor Neutrino Experiment znajduje się w Guangdongu w Chinach. Składa się z wielkich cylindrycznych wykrywaczy cząstek zanurzonych w wodzie, a znajdujących się w trzech podziemnych grotach. Osiem detektorów odpowiedzialnych jest za wykrywanie sygnałów z antyneutrin pochodzących z pobliskich reaktorów atomowych.
      Daya Bay projekt międzynarodowy i pierwszy tego typu wielki wspólny projekt fizyczny Chin i USA. Biorą w nich udział liczne instytucje naukowe, na czele których z chińskiej strony stoi Instytut Fizyki Wysokich Energii Chińskiej Akademii Nauk, a ze strony amerykańskiej Lawrence Berkeley National Laboratory oraz Brookhaven National Laboratory.
      W każdej z podziemnych grot Daya Bay wykrywa antyneutrina elektronowe. Dwie groty znajdują się w blisko reaktorów atomowych, a trzecia jest od nich sporo oddalona, co daje neutrinom czas na oscylacje. Naukowcy, porównując liczbę antyneutrin elektronowych, które dotarły do wykrywaczy położonych bliżej i dalej od reaktorów, mogą wyliczyć ile z nich zmieniło zapach, a z tego wyprowadzają wartość theta 13.
      W 2012 roku naukowcy pracujący przy Daya Bay ogłosili wyniki pierwszych powszechnie przyjętych pomiarów theta13. Od tego czasu ciągle uściślają swoje pomiary. W grudniu 2020 roku, po 9 latach pracy eksperymentu, zakończono zbieranie danych i zajęto się ich analizą. Okazało się, że Daya Bay znacznie przekroczył oczekiwania. Udało się bowiem zmierzyć wartość θ13 z 2,5-krotnie większą dokładnością, niż przyjęto w założeniach projektu. Żaden obecnie działający i planowany eksperyment nie powinien osiągnąć tak dużej precyzji.
      Liczne zespoły analityków wykonały benedyktyńską pracę szczegółowo analizując cały zestaw danych, biorąc pod uwagę zmiany wydajności czujników w czasie tych 9 lat pracy. Dane te posłużyły nam nie tylko do wyodrębnienia z nich antyneutrin, ale również do udoskonalenia naszej wiedzy o szumie w tle. To pozwoliło nam osiągnąć niezwykłą precyzję, mówi rzecznik prasowy eksperymenty, Jun Cao z Instytutu Fizyki Wysokich Energii.
      Dzięki precyzyjnym pomiarom θ13 naukowcy będą mogli łatwiej badań inne parametry neutrin oraz stworzyć dokładniejsze modele cząstek subatomowych i ich wzajemnego oddziaływania.
      Lepsze poznanie właściwości i oddziaływania antyneutrin może rzucić wiele światła na kwestię nierównowagi pomiędzy materią i antymaterią. Obecnie uważa się, że podczas Wielkiego Wybuchu powstało tyle samo materii i antymaterii. Jeśli jednak tak by się stało, to powinno dojść do całkowitej anihilacji, po której pozostałoby tylko światło. Musi więc istnieć coś, co spowodowało, że współczesny wszechświat składa się z materii. Być może tym czymś są jakieś różnice pomiędzy neutrinami a antyneutrinami. Nigdy nie wykryliśmy żadnych różnic pomiędzy cząstkami i antycząstkami w przypadku leptonów, do których należy neutrino. Znaleźliśmy jedynie różnice między kwarkami i antykwarkami. Jednak różnice te nie wystarczą, by wyjaśnić, dlaczego materia ma we wszechświecie taką przewagę. Może odpowiedź ukrywa się w neutrinach, mówi drugi z rzeczników eksperymentu, Kam-Biu Luk z Berkeley.
      Eksperymenty przyszłej generacji, takie jak DUNE (Deep Underground Neutrino Experiment) będą mogły wykorzystać pomiary wykonane przez Daya Bay do precyzyjnego porównania właściwości neutrin i antyneutrin. DUNE będzie najbardziej precyzyjnym wykrywaczem neutrin na świecie. Będzie on korzystał z budowanego właśnie najpotężniejszego na świecie źródła neutrin, PIP-II, w które zainwestowała Polska.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      W uruchomionym ponownie po trzech latach Wielkim Zderzaczu Hadronów rozpoczęto nowe testy modelu, który ma wyjaśnić masę neutrina. Zgodnie z Modelem Standardowym te cząstki, których nie można podzielić na mniejsze składowe – jak kwarki czy elektrony – zyskują masę dzięki interakcji z polem bozonu Higgsa. Jednak neutrino jest tutaj wyjątkiem. Mechanizm interakcji z bozonem Higgsa nie wyjaśnia jego masy. Dlatego też fizycy badają alternatywne wyjaśnienia.
      Jeden z modeli teoretycznych – mechanizm huśtawki, seesaw model – mówi, że znane nam lekkie neutrino zyskuje masę poprzez stworzenie pary z hipotetycznym ciężkim neutrinem. Żeby jednak ten model działał, neutrina musiałyby być cząstkami Majorany, czyli swoimi własnymi antycząstkami.
      Naukowcy pracujący w Wielkim Zderzaczu Hadronów przy eksperymencie CMS postanowili mechanizm huśtawki, poszukując neutrin Majorany powstających w bardzo specyficznym procesie zwanym fuzją bozonów wektorowych. Przeanalizowali w tym celu dane z CMS z lat 2016–2018. Jeśli model huśtawki by działał, w danych z kolizji powinny być widoczne dwa miony o tym samym ładunku elektrycznym, dwa oddalone od siebie dżety cząstek o dużej masie oraz żadnego neutrino.
      Uczeni nie znaleźli żadnych śladów neutrin Majorany. To jednak nie znaczy, że ich praca poszła na marne. Udało im się bowiem ustalić nowy zakres parametrów, które określają zakres poszukiwań ciężkiego neutrino Majorany. Wcześniejsze analizy w LHC wskazywały, że ciężkie neutrino Majorany ma masę powyżej 650 GeV. Najnowsze badania wskazują zaś, że należy go szukać w przedziale od 2 do 25 TeV. Teraz naukowcy z CMS zapowiadają zebranie nowych danych i kolejne przetestowanie modelu huśtawki.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Amerykański Departament Energii dał zielone światło do rozpoczęcia budowy PIP-II. To projekt znaczącej rozbudowy kompleksu akceleratorowego znajdującego się w Fermilab. Po ukończeniu prac będzie to najpotężniejsze na świecie źródło wysokoenergetycznych neutrin. W przeszłości w Fermilab pracował legendarny Tevatron, urządzenie niezwykle zasłużone dla fizyki. Teraz laboratorium zyska kolejny wyjątkowy instrument badawczy.
      PIP-II będzie pierwszym w USA akceleratorem cząstek, w budowę którego znaczący wkład wniosą partnerzy międzynarodowi z Polski, Francji, Indii, Włoch i Wielkiej Brytanii. Dzięki ich współpracy powstanie urządzenie zdolne do generowania wiązek protonów o mocy przekraczającej 1 megawat. To o 60% więcej niż obecne możliwości Fermilab. Dzięki supernowoczesnym rozwiązaniom akcelerator będzie w stanie dostarczyć wiązkę o odpowiednich właściwościach dla różnego rodzaju eksperymentów fizycznych.
      Jednym z najważniejszych zadań PIP-II będzie dostarczanie neutrin dla Deep Underground Neutrino Experiment (DUNE). Akceleratory z Fermilab były siłą napędową eksperymentów, które w ciągu ostatnich 50 lat doprowadziły do znaczących przełomów w fizyce. Oficjalne rozpoczęcie budowy PIP-II oznacza, że jesteśmy o krok bliżej do rozbudowy naszych instalacji i wspierania odkryć naukowych przez kolejnych 50 lat, mówi były dyrektor Fermilab, Nigel Lockyer.
      W ramach projektu PIP-II na początku łańcucha akceleratorów znajdujących się w Fermilab powstanie unikatowa potężna elastyczna pierwsze sekcja, wykorzystująca najnowsze osiągnięcia z dziedziny nadprzewodnictwa, wysokoenergetycznych systemów radiowych, sztucznej inteligencji i maszynowego uczenia się. Całość ma pozwolić na szybkie automatyczne dopasowywanie parametrów wiązki do wymagań danego eksperymentu przy minimalnym udziale człowieka.
      PIP-II zostanie ukończony w drugiej połowie obecnej dekady. Prace nad niektórymi jego elementami już zbliżają się ku końcowi. Tak jest na przykład z budynkiem zawierającym elementy kriogeniczne. Ta część PIP-II to główny wkład Departamentu Energii Atomowej Indii. A w PIP-II Injector Test Facility przeprowadzono udane testy dwóch modułów kriogenicznych. To pokazuje, że Fermilab stanie się światowym liderem w dziedzinie wykorzystania akceleratorów do badań nad neutrinami, a PIP-II będzie znaczącym wkładem w ten sukces, stwierdziła Harriet King z DOE.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...