
Łamanie Bitcoina i symulowanie molekuł – jak duży musi być komputer kwantowy, by tego dokonać?
By
KopalniaWiedzy.pl, in Technologia
-
Similar Content
-
By KopalniaWiedzy.pl
Nasz mózg składa się z miliardów neuronów, które muszą być chronione przed wpływem niekorzystnych czynników zewnętrznych. Rolę tej ochrony spełnia bariera krew-mózg. Ta mierząca 650 km wyspecjalizowana bariera między naczyniami krwionośnymi a mózgiem decyduje, jakie substancje mogą do mózgu przeniknąć. Bardzo dobrze spełnia swoją rolę, ale z punktu widzenia chorób neurologicznych jest najgorszym wrogiem współczesnej medycyny. Blokuje bowiem również dostęp leków do mózgu.
Naukowcy z Yale University poinformowali na łamach Nature Communications, że udało im się opracować molekułę, która na kilka godzin otwiera barierę krew-mózg, umożliwiając dostarczenie leków. Po raz pierwszy udało się kontrolować barierę krew-mózg za pomocą molekuły, mówi profesor Anne Eichmann, jedna z głównych autorek badań.
Doktor Kevin Boyé dołączył do zespołu profesor Eichmann w 2017 roku i zaczął badać molekułę Unc5B. To receptor śródbłonka, do którego ekspresji dochodzi w komórkach śródbłonka naczyń włosowatych. Uczony zauważył, że pozbawione tego receptora embriony myszy szybko umierały, gdyż nie tworzył się u nich prawidłowy układ krwionośny. To wskazywało, że Unc5B odgrywa ważną rolę w jego powstawaniu. Ponadto stwierdził, że u takich embrionów doszło do znaczącego spadku poziomu białka Claudin-5, które odpowiada za ścisłe przyleganie do siebie komórek śródbłonka w barierze krew-mózg. Naukowcy doszli więc do wniosku, że Unc5B odgrywa ważną rolę w utrzymaniu bariery krew-mózg.
Nie od dzisiaj wiadomo, że rozwój i funkcjonowanie bariery krew-mózg jest uzależnione od szlaku sygnałowego Wnt. Dotychczas nie były znane powiązania pomiędzy Unc5B a tym szlakiem. Dzięki zaś nowym badaniom naukowcy zauważyli, że Unc5B działa jak regulator tego szlaku.
Boyé poszedł więc o krok dalej. Pozbawił dorosłe myszy, z już rozwiniętą barierą krew-mózg, receptora Unc5B i okazało się, że gdy go zabrakło, bariera pozostała otwarta. Następnie uczony postanowił sprawdzić, który z ligandów – cząsteczek wiążących się z receptorami i wysyłających sygnały pomiędzy i wewnątrz komórkami – ma wpływ na integralność bariery. Okazało się, że bariera jest otwarta, gdy zabraknie ligandu Netrin-1. Naukowcy opracowali więc przeciwciało, które uniemożliwiało Netrin-1 połączenie się z receptorem. Po wstrzyknięciu przeciwciała dochodziło do zaburzenia szlaku sygnałowego Wnt i bariera krew-mózg była przez jakiś czas otwarta.
W najbliższej przyszłości naukowcy chcą skupić się na sprawdzeniu, czy takie otwieranie bariery krew-mózg jest bezpieczne, czy nie niesie ze sobą żadnych ryzyk oraz czy same przeciwciała nie są toksyczne. To otwiera pole do dalszych interesujących badań nad kwestią powstawania samej bariery oraz możliwości manipulowania ją w celu dostarczania leków, mówi Eichmann.
« powrót do artykułu -
By KopalniaWiedzy.pl
Gdy denerwujemy się, że nasz domowy pecet uruchamia się za długo, pewnym pocieszeniem może być informacja, iż w porównaniu z eksperymentalnymi komputerami kwantowymi jest on demonem prędkości. Uczeni pracujący nad tego typu maszynami spędzają każdego dnia wiele godzin na ich odpowiedniej kalibracji.
Komputery kwantowe, a raczej maszyny, które w przyszłości mają się nimi stać, są niezwykle czułe na wszelkie zewnętrzne zmiany. Wystarczy, że temperatura otoczenia nieco spadnie lub wzrośnie, że minimalnie zmieni się ciśnienie, a maszyna taka nie będzie prawidłowo pracowała. Obecnie fizycy kwantowi muszą każdego dnia sprawdzać, jak w porównaniu z dniem poprzednim zmieniły się warunki. Później dokonują pomiarów i ostrożnie kalibrują układ kwantowy - mówi profesor Frank Wilhelm-Mauch z Uniwersytetu Kraju Saary. Dopuszczalny margines błędu wynosi 0,1%, a do ustawienia jest około 50 różnych parametrów. Kalibracja takiej maszyny jest zatem niezwykle pracochłonnym przedsięwzięciem.
Wilhelm-Mauch i jeden z jego doktorantów zaczęli zastanawiać się na uproszczeniem tego procesu. Stwierdzili, że niepotrzebnie skupiają się na badaniu zmian w środowisku. Istotny jest jedynie fakt, że proces kalibracji prowadzi do pożądanych wyników. Nie jest ważne, dlaczego tak się dzieje. Uczeni wykorzystali algorytm używany przez inżynierów zajmujących się mechaniką konstrukcji. Dzięki niemu możliwe było zmniejszenie odsetka błędów poniżej dopuszczalnego limitu 0,1% przy jednoczesnym skróceniu czasu kalibracji z 6 godzin do 5 minut. Niemieccy naukowcy nazwali swoją metodologię Ad-HOC (Adaptive Hybrid Optimal Control) i poprosili kolegów z Uniwersytetu Kalifornijskiego w Santa Barbara o jej sprawdzenie. Testy wypadły pomyślnie.
W przeciwieństwie do metod ręcznej kalibracji nasza metoda jest całkowicie zautomatyzowana. Naukowiec musi tylko wcisnąć przycisk jak w zwykłym komputerze. Później może pójść zrobić sobie kawę, a maszyna kwantowa sama się wystartuje - mówi Wilhelm-Mauch.
« powrót do artykułu -
By KopalniaWiedzy.pl
Współczesne komputery kwantowe to bardzo skomplikowane urządzenia, które trudno jest budować, skalować, a do pracy wymagają niezwykle niskich temperatur. Dlatego naukowcy od dłuższego czasu interesują się optycznymi komputerami kwantowymi. Fotony łatwo przenoszą informację, a fotoniczny komputer kwantowy mógłby pracować w temperaturze pokojowej. Problem jednak w tym, że o ile wiadomo, jak budować pojedyncze kwantowe bramki logiczne dla fotonów, to olbrzymim wyzwaniem jest stworzenie dużej liczby bramek i połączenie ich tak, by możliwe było przeprowadzanie złożonych obliczeń.
Jednak optyczny komputer kwantowy może mieć prostszą architekturę, przekonują na łamach Optics naukowcy z Uniwersytetu Stanforda. Proponują oni wykorzystanie lasera do manipulowania pojedynczym atomem, który z kolei – za pomocą zjawiska teleportacji kwantowej – zmieni stan fotonu. Atom taki może być resetowany i wykorzystywany w wielu bramkach kwantowych, dzięki czemu nie ma potrzeby budowania różnych fizycznych bramek, co z kolei znakomicie uprości architekturę komputera kwantowego.
Jeśli chciałbyś zbudować komputer kwantowy tego typu, musiałbyś stworzyć tysiące kwantowych źródeł emisji, spowodować, by były nie do odróżnienia od siebie i zintegrować je w wielki obwód fotoniczny. Tymczasem nasza architektura zakłada wykorzystanie niewielkiej liczby dość prostych podzespołów, a wielkość naszej maszyny nie rośnie wraz z wielkością programu kwantowego, który jest na niej uruchamiany, wyjaśnia doktorant Ben Bartlett, główny autor artykułu opisującego prace fizyków ze Stanforda.
Nowatorska architektura składa się z dwóch głównych elementów. Pierścień przechowujący dane to po prostu pętla ze światłowodu, w której krążą fotony. Pełni on rolę układu pamięci, a każdy foton reprezentuje kubit. Badacze mogą manipulować fotonem kierując go z pierścienia do jednostki rozpraszania. Składa się ona z wnęki optycznej, w której znajduje się pojedynczy atom. Foton wchodzi w interakcję z atomem i dochodzi do ich splątania. Następnie foton wraca do pierścienia, a laser zmienia stan atomu. Jako, że jest on splątany z fotonem, zmiana stanu atomu skutkuje też zmianą stanu fotonu. Poprzez pomiar stanu atomu możesz badać stan fotonu. W ten sposób potrzebujemy tylko 1 atomowego kubitu, za pomocą którego manipulujemy wszystkimi fotonicznymi kubitami, dodaje Bartlett.
Jako że każda kwantowa bramka logiczna może zostać skompilowana w szereg operacji przeprowadzonych na atomie, teoretycznie można by w ten sposób uruchomić dowolny program kwantowy dysponując jednym atomowym kubitem. Działanie takiego programu polegałoby na całym ciągu operacji, w wyniku których fotony wchodziłyby w interakcje z atomowym kubitem.
W wielu fotonicznych komputerach kwantowych bramki są fizycznymi urządzeniami, przez które przechodzą fotony, zatem jeśli chcesz zmienić sposób działania swojego programu zwykle musisz zmienić konfigurację sprzętową komputera. W przypadku naszej architektury nie musisz zmieniać sprzętu. Wystarczy, że wyślesz do maszyny inny zestaw instrukcji, stwierdza Bartlett.
« powrót do artykułu -
By KopalniaWiedzy.pl
Fizycy z Harvard-MIT Center for Ultracold Atoms stworzyli specjalny typ komputera kwantowego, zwany programowalnym symulatorem kwantowym, który operuje na 256 kubitach. To niezwykle ważny krok w kierunku maszyn kwantowych działających na duża skalę. Wchodzimy na teren, którego dotychczas nikt nie badał, mówi profesor Mikhail Lukin, jeden z głównych autorów badań. To zupełnie nowa część kwantowego świata.
Połączenie bezprecedensowej liczby kubitów oraz możliwości ich programowania jest tym, co stawia nowy system na czele kwantowego wyścigu i pozwoli badać niedostępne dotychczas zagadnienia z dziedziny informatyki kwantowej. Trzeba bowiem pamiętać, że w odpowiednich warunkach dokładanie kolejnych kubitów do kwantowego systemu pozwala na wykładniczy wzrost ilości przechowywanej i przetwarzanej informacji. Liczba stanów kwantowych, jakie możemy zapisać w zaledwie 256 kubitach jest większa, niż liczba atomów w Układzie Słonecznym, wyjaśnia Sepher Ebadi, student Graduate School of Arts and Sciences i główny autor badań.
Już teraz symulator pozwolił na przeprowadzenie obserwacji wielu egzotycznych stanów kwantowych, których nigdy wcześniej nie uzyskano. Naukowcy wykorzystali go też do badania kwantowego przejścia fazowego z niezwykle duża dokładnością, dzięki czemu poznali kolejne szczegóły działania magnetyzmu na poziomie kwantowym. Tego typu eksperymenty pozwalają zarówno udoskonalać komputery kwantowe, jak i opracowywać nowe materiały o egzotycznych właściwościach.
Twórcy maszyny zbudowali ją w oparciu o opracowaną przez siebie platformę, która w 2017 roku osiągnęła wielkość 51 kubitów. System ten składał się z ultrazimnych atomów rubidu uwięzionych w pułapce i ułożonych w jednowymiarową matrycę za pomocą szczypiec optycznych, na które składały się promienie lasera. W nowym systemie ułożono dwuwymiarową matrycę atomów, dzięki czemu możliwe stało się zwiększenie liczby kubitów z 51 do 256. Za pomocą szczypiec optycznych naukowcy mogą układać atomy we wzory i tworzyć programowalne kształty, np. kwadraty, plastry miodu itp, uzyskując różne interakcje pomiędzy kubitami.
Głównym elementem całości jest urządzenie zwane przestrzennym modulatorem światła, które jest wykorzystywane do nadawania kształtu optycznej powierzchni falowej, dzięki czemu uzyskujemy setki indywidualnych szczypiec optycznych. To takie samo urządzenie, jak te używane w projektorach wyświetlających obrazy na ekranie, jednak my zaadaptowaliśmy je na potrzeby naszego symulatora kwantowego, wyjaśnia Ebadi.
Początkowe ułożenie atomów w szczypcach optycznych jest przypadkowe. Naukowcy używają więc drugiej pary szczypiec do przeciągnięcia atomów na zaplanowane pozycje. Dzięki laserom mają całkowitą kontrolę nad pozycją kubitów i mogą nimi manipulować.
Obecnie trwają prace nad udoskonaleniem systemu poprzez poprawę kontroli nad kubitami i uczynienie go łatwiejszym w programowaniu. Naukowcy szukają też nowych zastosowań dla swojego systemu, od badania egzotycznych stanów materii kwantowej po rozwiązywanie rzeczywistych problemów, z którymi na co dzień się spotykamy.
« powrót do artykułu -
By KopalniaWiedzy.pl
Daliście się nabrać na przypadkowe przełączenie i uruchomienie Zooma na maszynie kwantowej? :)
Międzynarodowy zespół naukowy wykorzystał Sycamore, kwantowy komputer Google'a, do obsługi oprogramowania wideokonferencyjnego Zoom. Eksperci mają nadzieję, że dzięki współpracy z komputerem kwantowym – który wykazał swoją przewagę w niektórych zadaniach nad komputerami klasycznymi – możliwe będzie umieszczenie uczestników rozmowy w więcej niż jednym wirtualnym pokoju.
Autorzy badań nad „kwantową przewagą Zooma” twierdzą, że do jej zauważenia doszło przypadkiem. Miało to miejsce, gdyż Benedetta Brassard, fizyk kwantowa z University of Waterloo, przypadkowo połączyła Zooma z Sycamore podczas online'owego spotkania. Brassard pracuje w ramach International Fault Tolerant Benchmarking Team (FiT/BiT). Brałam udział w online'owym spotkaniu FiT/Bit i postanowiłam na chwilę przełączyć się na panel Sycamore'a, by sprawdzić, jak idą moje kwantowe obliczenia. W tym momencie Brassard otrzymała mema dotyczącego algorytmu Shora. Mem ją rozproszył i w jakiś sposób uczona podłączyła swojego Zooma do komputera kwantowego.
Jedni koledzy zaczęli mnie informować, że wyłączyłam dźwięk, podczas gdy inni mnie słyszeli. Zauważyłam, że coś jest nie tak, gdy na ekranie zaczęły pojawiać mi się liczne wersje Zooma, stwierdza uczona. Jej zdaniem Sycamore zastosował znaną z mechaniki kwantowej teorię wielu światów.
Jedynym sposobem na powrót sesji Zooma do świata klasycznego było wykonywanie pomiarów, czyli w tym przypadku zwracanie uwagi na to, co mówią inni, wspomina Brassard. Na szczęście uczona wiedziała, jak to zrobić. Niedawno bowiem prowadziła doktoranta, który w ramach swoich zainteresowań implementował Instagrama na komputer kwantowy D-Wave 2000Q. Naszym zadaniem było określenie optymalnej pory dnia, w której influencerzy powinni wstawiać na Instagrama poty związane z domowymi zwierzętami. Odkryliśmy, że jest to problem NP. Brassard wiedziała więc, jak przełączyć aplikację ze stanu kwantowego w klasyczny.
Cała sytuacja została opisana na łamach Quantum Advances in Computing and Correlation. Autorzy badań rozpoczęli prace nad stworzeniem mechanizmu, który pozwoliłby użytkownikom Zooma na jednoczesne istnienie w wielu wirtualnych pokojach.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.