Sign in to follow this
Followers
0

Błyskawiczna kwantowa kalibracja
By
KopalniaWiedzy.pl, in Technologia
-
Similar Content
-
By KopalniaWiedzy.pl
Fizycy z Uniwersytetu Oksfordzkiego pobili światowy rekord w precyzji kontrolowania pojedynczego kubitu. Uzyskali odsetek błędów wynoszący zaledwie 0,000015%, co oznacza, że ich kubit może popełnić błąd raz na 6,7 milionów operacji. O ile wiemy to najbardziej precyzyjne operacje z udziałem kubitów, jakie kiedykolwiek wykonano. To ważny krok w kierunku budowy praktycznego komputera kwantowego, który zmierzy się z prawdziwymi problemami, mówi współautor badań, profesor David Lucas z Wydziału Fizyki Uniwersytetu Oksfordzkiego.
Użyteczne obliczenia prowadzone za pomocą komputerów kwantowych będą wymagały prowadzenia milionów operacji przez wiele kubitów. To oznacza, że jeśli odsetek błędów będzie zbyt wysoki, obliczenia staną się nieużyteczne. Oczywiście istnieją metody korekcji błędów, ale ich zastosowanie będzie wymagało zaangażowania kolejnych kubitów. Opracowana w Oksfordzie nowa metoda zmniejsza liczbę błędów, zatem zmniejsza liczbę wymaganych kubitów, a to oznacza, że zmniejsza rozmiary i koszt budowy samego komputera kwantowego.
Jeśli zmniejszymy liczbę błędów, możemy zmniejszyć moduł zajmujący się korektą błędów, a to będzie skutkowało mniejszym, tańszym, szybszym i bardziej wydajnym komputerem kwantowym. Ponadto techniki precyzyjnego kontrolowania pojedynczego kubity są przydatne w innych technologiach kwantowych, jak zegary czy czujniki kwantowe.
Bezprecedensowy poziom kontroli i precyzji został uzyskany podczas pracy z uwięzionym jonem wapnia. Był on kontrolowany za pomocą mikrofal. Taka metoda zapewnia większą stabilność niż kontrola za pomocą laserów, jest też od nich tańsza, bardziej stabilna i łatwiej można ją zintegrować w układach scalonych. Co więcej, eksperymenty prowadzono w temperaturze pokojowej i bez użycia ochronnego pola magnetycznego, co znakomicie upraszcza wymagania techniczne stawiane przed komputerem wykorzystującym tę metodę.
Mimo że osiągnięcie jest znaczące, przed ekspertami pracującymi nad komputerami kwantowymi wciąż stoją poważne wyzwania. Komputery kwantowe wymagają współpracy jedno- i dwukubitowych bramek logicznych. Obecnie odsetek błędów na dwukubitowych bramkach jest bardzo wysoki, wynosi około 1:2000. Zanim powstanie praktyczny komputer kwantowy trzeba będzie dokonać znaczącej redukcji tego odsetka.
Źródło: Single-qubit gates with errors at the 10−7 level, https://journals.aps.org/prl/accepted/10.1103/42w2-6ccy
« powrót do artykułu -
By KopalniaWiedzy.pl
Algorytm sztucznej inteligencji stworzony na University of Cambridge uzyskał 97-procentową dokładność w diagnozowaniu celiakii na podstawie biopsji. System maszynowego uczenia się, który został wytrenowany na zestawie niemal 3400 biopsji pochodzących z czterech szpitali, może znakomicie przyspieszyć pracę lekarzy. Będzie też nieocenioną pomocą w krajach rozwijających się, gdzie bardzo brakuje patologów.
Celiakia, autoimmunologiczna nadwrażliwość na gluten, daje różne objawy u różnych pacjentów. Jej zdiagnozowanie nie jest więc proste. Najdoskonalszą metodą rozpoznania celiakii jest biopsja dwunastnicy. Pobrany materiał jest następnie analizowany przez patologów. Analizują oni stan kosmków jelitowych. Nie jest to łatwe zadanie, gdyż mogą w nich występować bardzo drobne zmiany. Patolodzy używają pięciostopniowej skali Marsha-Oberhubera, w której 0 oznacza prawidłowe kosmki, a 4 - ich całkowity zanik.
Celiakia może dotykać nawet 1% osób i powodować bardzo poważne objawy, ale uzyskanie diagnozy nie jest proste. Może to trwać wiele lat. Sztuczna inteligencja może przyspieszyć ten proces, mówi profesor Elizabeth Soilleux z Wydziału Patologii Uniwersytetu w Cambridge, która współtworzyła nowy algorytm.
Oprogramowanie zostało zweryfikowane na podstawie niemal 650 biopsji, z którymi system nie miał wcześniej do czynienia. Okazało się, że w ponad 97% przypadków postawił on prawidłową diagnozę. Jego czułość diagnostyczna wynosiła ponad 95%. Oznacza to, że jest on w stanie prawidłowo zidentyfikować chorobę u 95% osób rzeczywiście na nią cierpiących. Natomiast swoistość oprogramowania – czyli zdolność do zidentyfikowania przypadków, w których choroba nie występuje – wynosiła niemal 98%.
System osiągnął więc bardzo dobre wyniki. Wcześniejsze badania, przeprowadzone przez ten sam zespół, wykazały, że nawet sami patolodzy nie zgadzają się między sobą odnośnie diagnozy. Gdy bowiem specjalistom pokazano 100 slajdów w biopsjami i poproszono o stwierdzenie, czy pacjent choruje, nie choruje czy też nie można tego stwierdzić na podstawie biopsji, patolodzy nie zgadzali się ze sobą w ponad 20% przypadków.
W weryfikacji diagnoz postawionych przez sztuczną inteligencję udział wzięło 4 patologów. Pokazano im 30 slajdów i okazało się, że patolodzy z równie dużym prawdopodobieństwem zgadzali się z diagnozą postawioną przez algorytm, co z diagnozą postawioną przez drugiego patologa. To dowodzi, że po raz pierwszy sztuczna inteligencja potrafi równie dobrze co doświadczony patolog stwierdzić, czy pacjent cierpi na celiakię, czy tez nie. Trenowaliśmy nasz system na zestawach danych uzyskanych w różnych warunkach, dzięki temu wiemy, że sprawdzi się on w praktyce, w sytuacjach gdy materiał z biopsji jest w różny sposób przetwarzany i obrazowany, dodaje doktor Florian Jaeckle.
Twórcy algorytmu planują teraz przetestowanie go na znacznie większej liczbie osób. Wyniki takich testów, o ile wypadną równie pomyślnie, będą podstawą do starania się o uznanie algorytmu za narzędzie dopuszczone w diagnostyce medycznej.
Artykuł opisujący algorytm został opublikowany na łamach The New England Journal of Medicine.
« powrót do artykułu -
By KopalniaWiedzy.pl
Badacze z QuTech (Uniwersytet Techniczny w Delft), we współpracy z Fujitsu i firmą Element Six, zaprezentowali działający zestaw bramek kwantowych, w których prawdopodobieństwo wystąpienia błędu wynosi poniżej 0,1%. Mimo, że całość wymaga jeszcze wiele pracy, tak niskie prawdopodobieństwo pojawienia się błędu jest jednym z podstawowych warunków prowadzenia w przyszłości powszechnych obliczeń kwantowych na dużą skalę.
Skomplikowane obliczenia kwantowe wykonywane są za pomocą dużego ciągu podstawowych operacji logicznych prowadzonych na bramkach. Wynik takich obliczeń będzie prawidłowy pod warunkiem, że na każdej z bramek pojawi się minimalna liczba błędów, z którymi będą mogły poradzić sobie algorytmy korekty błędów. Zwykle uznaje się, że błędy nie powinny pojawiać się w więcej niż 0,1% do 1% operacji. Tylko wówczas algorytmy korekty będą działały właściwie i otrzymamy prawidłowy wynik końcowy obliczeń.
Inżynierowie z QuTech i ich koledzy pracują z procesorami kwantowymi, które w roli kubitów wykorzystują spiny w diamentach. Kubity te składają się z elektronu i spinu powiązanego z defektami struktury krystalicznej diamentu. Defektem takim może być miejsce, w którym atom azotu zastąpił atom węgla w diamencie. Procesory takie działają w temperaturze do 10 K i są dobrze chronione przed zakłóceniami. Współpracują też z fotonami, co pozwala na stosowanie metod przetwarzania rozproszonego.
Podczas eksperymentów wykorzystano system dwóch kubitów, jednego ze spinu elektronu w centrum defektu sieci krystalicznej, drugiego ze spinu jądra atomu w centrum defektu. Każdy z rodzajów bramek w takim systemie działał z odsetkiem błędów poniżej 0,1%, a najlepsze bramki osiągały 0,001%
Żeby zbudować tak precyzyjne bramki, musieliśmy usunąć źródła błędów. Pierwszym krokiem było wykorzystanie ultraczystych diamentów, które charakteryzuje niska koncentracja izotopów C-13, będących źródłem zakłóceń, wyjaśnia główny autor badań, Hans Bartling. Równie ważnym elementem było takie zaprojektowanie bramek, by odróżniały kubity od siebie i od szumów tła. W końcu zaś, konieczne było precyzyjne opisanie bramek i zoptymalizowanie ich działania. Naukowcy wykorzystali metodę zwaną gate set tomography, która pozwala na dokładny opis bramek i operacji logicznych w procesorach kwantowych. Uzyskanie pełnej i precyzyjnej informacji o błędach na bramkach było niezwykle ważne dla procesu usuwania niedoskonałości i optymalizowania parametrów bramek, dodaje Iwo Yun.
To jednak dopiero jeden, chociaż niezmiernie ważny, krok w kierunku wiarygodnego uniwersalnego komputera kwantowego. Nasz eksperyment został przeprowadzony na dwukubitowym systemie i wykorzystaliśmy konkretny rodzaj defektów sieci krystalicznej. Największym wyzwaniem jest utrzymanie i poprawienie jakości bramek w momencie, gdy trafią one do układów scalonych ze zintegrowaną optyką oraz elektroniką i będą pracowały ze znacznie większą liczbą kubitów, wyjaśnia Tim Taminiau, który nadzorował prace badawcze.
Bramki zostały szczegółowo opisane na łamach Physical Review Applied.
« powrót do artykułu -
By KopalniaWiedzy.pl
Naukowcy z Wydziału Fizyki Uniwersytetu Oksfordzkiego wykonali ważny krok w kierunku praktycznego wykorzystania komputerów kwantowych. Jako pierwsi zaprezentowali kwantowe przetwarzanie rozproszone. Wykorzystali przy tym fotoniczny interfejs, za pomocą którego połączyli dwa procesory kwantowe w jeden w pełni działający komputer. Swoje osiągnięcie opisali na łamach Nature.
W ten sposób zapoczątkowali rozwiązanie problemu skalowalności maszyn kwantowych. Dzięki temu można, przynajmniej teoretycznie, połączyć olbrzymią liczbę niewielkich urządzeń kwantowych, które działałyby jak jeden procesor operujący na milionach kubitów. Zaproponowana na Oksfordzie architektura składa się z niewielkich węzłów, z których każdy zawiera małą liczbę kubitów, na które składają się jony uwięzione w pułapkach. Połączone za pomocą światłowodów węzły można ze sobą splątać, co pozwala na przeprowadzanie obliczeń kwantowych, podczas których wykorzystuje się kwantową teleportację.
Oczywiście już wcześniej różne zespoły naukowe potrafiły dokonać kwantowej teleportacji stanów. Wyjątkowym osiągnięciem uczonych z Oksfordu jest teleportacja bramek logicznych. Zdaniem badaczy, kładzie to podwaliny pod „kwantowy internet” przyszłości, w którym odległe procesory utworzą bezpieczną sieć komunikacyjną i obliczeniową.
Autorzy dotychczasowych badań nad kwantową teleportacją skupiali się na teleportacji stanów kwantowych pomiędzy fizycznie oddalonymi systemami. My użyliśmy kwantowej teleportacji do przeprowadzenia interakcji pomiędzy takimi systemami. Precyzyjnie dostrajając takie interakcje możemy przeprowadzać operacje na bramkach logicznych pomiędzy kubitami znajdującymi się w oddalonych od siebie miejscach. To pozwala na połączenie różnych procesorów kwantowych w jeden komputer, mówi główny autor badań Dougal Main.
Wykorzystana koncepcja jest podobna do architektury superkomputerów, w których poszczególne węzły obliczeniowe – de facto osobne komputery – są połączone tak, że działają jak jedna wielka maszyna. W ten sposób naukowcy ominęli problem upakowania coraz większej liczby kubitów w jednym komputerze, zachowując jednocześnie podatne na zakłócenia stany kwantowe, niezbędne do przeprowadzania operacji obliczeniowych. Taka architektura jest też elastyczna. Pozwala na podłączania i odłączanie poszczególnych elementów, bez zaburzania całości.
Badacze przetestowali swój komputer za pomocą algorytmu Grovera. To kwantowy algorytm pozwalający na przeszukiwanie wielkich nieuporządkowanych zbiorów danych znacznie szybciej niż za pomocą klasycznych komputerów. Nasz eksperyment pokazuje, że obecna technologia pozwala na kwantowe przetwarzanie rozproszone. Skalowanie komputerów kwantowych to poważne wyzwanie technologiczne, które prawdopodobnie będzie wymagało nowych badań w dziedzinie fizyki i będzie wiązało się poważnymi pracami inżynieryjnymi w nadchodzących latach, dodaje profesor David Lucas z UK Quantum Computing and Simulation Lab.
« powrót do artykułu -
By KopalniaWiedzy.pl
Komputery kwantowe mogą, przynajmniej teoretycznie, przeprowadzać obliczenia, które są poza zasięgiem tradycyjnych maszyn. Ich kluczowym elementem są splątane kwantowe bity, kubity. Splątanie jest jednak stanem niezwykle delikatnym, bardzo wrażliwym na wpływ czynników zewnętrznych, na przykład promieniowania kosmicznego. Powoduje ono, że średnio co 10 sekund dochodzi do katastrofalnego błędu i kwantowe układy scalone tracą dane. Może ono za jednym razem usunąć wszelkie dane z procesora nawet najbardziej zaawansowanej maszyny kwantowej.
Fizyk Quian Xu z University of Chicago i jego koledzy poinformowali o opracowaniu metody, która aż o 440 000 razy wydłuża czas pomiędzy błędami powodowanymi przez promieniowanie kosmiczne. Zatem mają one miejsce raz na 51 dni.
Badacze zaproponowali komputer kwantowy składający się z wielu układów scalonych z danymi, z których każdy posiada liczne nadprzewodzące kubity. Wszystkie te układy są połączone z układem pomocniczym, który zawiera dodatkowe kubity monitorujące dane. Wszystkie chipy korzystałyby ze standardowych metod korekcji błędów oraz dodatkowej korekcji błędów powodowanych przez promieniowanie kosmiczne. Dzięki temu, że dane są rozdzielone na różne układy, zniszczenia powodowane przez promieniowanie kosmiczne są ograniczane. Gdy już do nich dojdzie, układ pomocniczy, we współpracy z układami, których dane nie zostały uszkodzone przez promieniowanie, przystępuje do korekty i odzyskania utraconych danych. Komputer nie musi rozpoczynać pracy na nowo, gdy tylko niektóre układy utracą dane, Xu. Co więcej, metoda ta wykrywa i koryguje dane pojawiające się w układzie pomocniczym.
Autorzy badań twierdzą, że ich metoda wymaga zaangażowania mniejszej ilości zasobów oraz żadnych lub niewielkich modyfikacji sprzętowych w porównaniu z dotychczasowymi próbami ochrony komputerów kwantowych przed promieniowaniem kosmicznym. W przyszłości chcieliby ją przetestować na chmurze kwantowej IBM-a lub procesorze Sycamore Google'a.
Ze szczegółowym opisem metody można zapoznać się na łamach arXiv.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.