Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Zabijanie bakterii laserem. Światło radzi sobie z antybiotykoopornymi patogenami

Recommended Posts

Świat zmaga się z rosnącym kryzysem antybiotykooporności. Nadmierne używanie antybiotyków w medycynie, przemyśle spożywczym czy kosmetycznym, prowadzi do pojawiania się bakterii opornych na działanie antybiotyków. Przedostające się do środowiska antybiotyki, a w niektórych rzekach ich stężenie 300-krotnie przekracza bezpieczny poziom, wymuszają na patogenach ciągłą ewolucję w kierunku antybiotykooporności. Nawet w jelitach dzieci odkryto setki bakteryjnych genów antybiotykooporności. Bez nowych antybiotyków lub innych rozwiązań realny staje się scenariusz, w którym ludzie znowu zaczną umierać z powodu zwykłych zakażeń czy niegroźnych obecnie chorób.

Jedną ze strategii spoza repertuaru środków chemicznych jest wykorzystanie metod fizycznych, jak światło ultrafioletowe, promieniowanie gamma czy ciepło. Metody są skuteczne w dezaktywowaniu patogenów, jednak prowadza do poważnych uszkodzeń tkanek, przez co nie mogą być stosowane w praktyce klinicznej.

Dlatego też część naukowców zainteresowała się światłem widzialnym. W niskim natężeniu jest ono bezpieczne dla tkanek, a jednocześnie posiada zdolność dezaktywacji bakterii, wirusów i innych patogenów. Zajmujących się tym problemem specjalistów szczególnie interesują lasery femtosekundowe, emitujące ultrakrótkie impulsy światła, których czas trwania liczy się w femtosekundach (1 femtosekunda to 1/1 000 000 000 000 000 sekundy).

Naukowcy z Washington University School of Medicine wykazali, że ultrakrótkie impulsy w zakresie światła widzialnego – o długości fali 415–425 nm – mogą być efektywną bronią przeciwko antybiotykoopornym bakteriom i ich przetrwalnikom.
Naukowcy przetestowali laser na na metycylinoopornym gronkowcu złocistym (MRSA) oraz E. coli. Bakterie te są wysoce odporne na działanie licznych środków fizycznych i chemicznych. Laser testowano też na przetrwalnikach Bacillus cereus, które mogą powodować zatrucia pokarmowe i są w stanie przetrwać gotowanie. Testy wykazały, że laser dezaktywuje 99,9% bakterii poddanych jego działaniu.

Naukowcy wyjaśniają, że przy pewnej mocy ich laser zaczyna dezaktywować wirusy. Po zwiększeniu mocy robi to samo z bakteriami. Jego światło pozostaje jednak bezpieczne dla ludzkich tkanek. Dopiero zwiększenie mocy o cały rząd wielkości zabija komórki. Zatem istnieje pewne okienko terapeutyczne, które pozwala na jego bezpieczne wykorzystanie.

Ultrakrótkie impulsy laserowe dezaktywują patogeny, nie szkodząc ludzkim białkom i komórkom. Wyobraźmy sobie, że przed zamknięciem rany, operujący chirurg mógłby zdezynfekować ją za pomocą lasera. Myślę, że już wkrótce technologia ta może być wykorzystywana do dezynfekcji produktów biologicznych in vitro, a w niedalekiej przyszłości do dezynfekcji krwioobiegu. Pacjentów można by poddać dializie i jego krew przepuścić przez laserowe urządzenie ją dezynfekujące, mówi główny autor badań Shew-Wei Tsen.

Tsen wraz z profesorem Samuelem Achilefu od lat badają zdolność ultrakrótkich impulsów laserowych do zabijania patogenów. Już wcześniej wykazali, że dezaktywują one wirusy i „zwykłe” bakterie. Teraz, we współpracy z profesor mikrobiologii Shelley Haydel z Arizona State University, rozszerzyli swoje badania na przetrwalniki oraz antybiotykooporne bakterie.

Wirusy i bakterie zawierają gęsto upakowane struktury proteinowe. Laser dezaktywuje je wprowadzając te struktury w tak silne wibracje, że niektóre z wiązań w proteinach pękają. Taki pęknięty koniec stara się jak najszybciej z czymś połączyć i najczęściej łączy się z inną strukturą, niż ta, z którą był dotychczas powiązany. W ten sposób wewnątrz patogenu pojawiają się nieprawidłowe połączenia wewnątrz protein i pomiędzy nimi, co powoduje, że białka nie funkcjonują prawidłowo i patogen przestaje funkcjonować.

Wszystko, co pochodzi od ludzi czy zwierząt może zostać zanieczyszczone patogenami. Wszelkie produkty krwiopochodne, zanim zostaną wprowadzone do organizmu pacjenta, są skanowane pod kątem obecności patogenów. Problem jednak w tym, że musimy wiedzieć, czego szukamy. Jeśli pojawiłby się nowy wirus krążący we krwi, jak np. miało to miejsce w latach 70. i 80. w przypadku wirusa HIV, to mógłby dostać się z takimi preparatami do krwioobiegu. Ultrakrótkie impulsy lasera to metoda, która pozwali upewnić się, że produkty krwiopochodne są wolne od patogenów. Zarówno tych znanych, jak i nieznanych, mówi Tsen.

Więcej na temat badań grupy Tsena przeczytamy na łamach Journal Biophotonic.


« powrót do artykułu

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Badania uczonych z The Australian National University mogą doprowadzić do pojawienia się lepszych metod walki z rzadkimi, ale niezwykle śmiertelnymi infekcjami bakteryjnymi. Mowa o bakteriach powodujących gangrenę, sepsę czy tężec. Na szczęście ta grupa bakterii rzadko powoduje infekcje. W USA jest mniej niż 1000 takich przypadków rocznie. My skupiliśmy się bakterii Clostridium septicum, która w ciągu 2 dni zabija 80% zakażonych. Jest niezwykle śmiercionośna, mówi profesor Si Ming Man.
      Australijczycy odkryli, że Clostridium septicum bardzo szybko zabija komórki naszego organizmu, gdyż uwalnia toksynę działającą jak młotek. Toksyna ta wybija dziury w komórkach. To, oczywiście, wzbudza alarm w naszym układzie odpornościowym. Jednak gdy ten przystępuje do działania, może wyrządzić więcej szkód niż korzyści. Układ odpornościowych ma dobre zamiary, próbuje zwalczać bakterię. Problem jednak w tym, że w tym procesie zarażone komórki dosłownie eksplodują i umierają. Gdy bakteria mocno się rozprzestrzeni i w całym ciele mamy wiele umierających komórek, dochodzi do sepsy i wstrząsu. Dlatego pacjenci bardzo szybko umierają, mówi uczony.
      Obecnie mamy niewiele sposób leczenia w takich przypadkach. Jednak analizy Mana i jego zespołu dają nadzieję, że opcji tych będzie więcej. Nasze badania pokazały, że możemy rozpocząć prace nad nowymi terapiami, na przykład nad wykorzystaniem leków do neutralizacji toksyny. Wykazaliśmy też, że już w tej chwili w testach klinicznych znajdują się leki, które mogą zablokować kluczowy, odpowiedzialny za rozpoznanie toksyny, receptor układu immunologicznego. Takie leki uniemożliwiłyby układowi odpornościowemu zbyt gwałtowną reakcję na toksynę. Łącząc tego typu leki moglibyśmy opracować terapię ratującą życie, dodaje Man.
      Dodatkową korzyść odniósłby przemysł, gdyż ta sama bakteria zabija owce i krowy, nowe leki można by więc stosować też w weterynarii.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Dr Paweł Krzyżek z Katedry i Zakładu Mikrobiologii Uniwersytetu Medycznego im. Piastów Śląskich we Wrocławiu zbada, co powoduje antybiotykooporność Helicobacter pylori, a więc patogenu odgrywającego kluczową rolę w rozwoju stanów zapalnych żołądka, wrzodów żołądka i dwunastnicy, a także nowotworów żołądka. Ważną częścią projektu będzie analiza biofilmu.
      Jak podkreśla dr Krzyżek, rosnąca oporność H. pylori jest wynikiem niewłaściwego stosowania środków przeciwdrobnoustrojowych. Z drugiej strony do problemów związanych z leczeniem zakażeń tą bakterią przyczyniają się 1) jej zdolność do tworzenia biofilmu (wielokomórkowej struktury otoczonej grubą warstwą macierzy), 2) możliwość zmiany morfologii z typowej dla H. pylori formy spiralnej w mniej wrażliwą na antybiotyki formę sferyczną oraz 3) wydzielanie pęcherzyków błonowych, czyli struktur pozakomórkowych, które aktywnie usuwają substancje przeciwdrobnoustrojowe z wnętrza komórek i stabilizują architekturę biofilmu.
      W ramach swojego projektu dr Krzyżek chce prześledzić dynamikę zmian adaptacyjnych (przystosowawczych) szczepów H. pylori podczas ekspozycji na najważniejsze stosowane obecnie antybiotyki: klarytromycynę, metronidazol i lewofloksacynę.
      Na potrzeby badań naukowiec sformułował dwie hipotezy główne: 1) produkcja biofilmu przy wystawieniu na działanie antybiotyków jest intensywniejsza u szczepów wielolekoopornych H. pylori niż u szczepów wrażliwych lub z pojedynczą opornością; 2) wystawienie szczepów H. pylori na podprogowe stężenia antybiotyków przyczynia się do szeregu zmian przystosowawczych zależnych od użytego antybiotyku.
      W pierwszym etapie naukowiec będzie prowadził hodowle mikrobiologiczne i analizował tworzenie biofilmu w warunkach stacjonarnych. W kolejnym chce potwierdzić uzyskane wyniki w warunkach przepływowych. W tym celu zastosuje automatyczny system Bioflux; pozwoli on na badanie wzrostu bakteryjnego w warunkach kontrolowanego przepływu medium i antybiotyków. Co ważne, przypomina to warunki panujące w naszym organizmie. W tym miejscu warto nadmienić, że badania nad tworzeniem biofilmu przez H. pylori w warunkach przepływu medium mają charakter wysoce innowacyjny i po raz pierwszy na świecie zostały wykonane przez zespół badawczy pod moim kierownictwem - przypomniał dr Krzyżek.
      Zespół Krzyżka wykona analizy biofilmu stosując wiele selektywnych barwników, dzięki którym można będzie wizualizować poszczególne komponenty oraz przeprowadzi oceny jego parametrów fizycznych. Dzięki temu możliwa będzie ocena zmian zachodzących w biofilmie pod wpływem stresu powodowanego przez obecność antybiotyków.
      W kolejnym etapie badań zespół zajmie się oceną jakościowo-ilościową pęcherzyków błonowych. Badania te będą prowadzone we współpracy z zespołem doktor Rosselli Grande z Uniwersytetu „Gabriele d'Annunzio” we Włoszech. To jeden z dwóch zespołów na świecie, który specjalizuje się w tematyce pęcherzyków błonowych H. pylori.
      Głównym celem doktora Krzyżka jest poszerzenie wiedzy na temat mechanizmów adaptacyjnych H. pylori oraz nabywania antybiotykooporności przez ten patogen. Dzięki temu możliwe będzie opracowanie lepszych terapii do walki z tą bakterią.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Krwawienie z naczyń krwionośnych podczas operacji neurochirurgicznych to poważny problem. Krew zasłania pole widzenia i konieczne jest jej usuwanie. Dlatego pole operacyjne, w którym nie pojawiałaby się krew czyniłoby cały zabieg bardziej precyzyjnym i bezpiecznym. Naukowcy z University of Texas w Austin i University of California, Irvine, opracowali właśnie laserową platformę do bezkrwawej resekcji tkanki mózgowej.
      Obecnie podczas zabiegów neurochirurgicznych, by zapewnić dobre pole widzenia, wykorzystuje się ultradźwiękowe aspiratory, po których stosuje się przyżeganie (elektrokauteryzację). Jako jednak, że obie metody stosowane są jedna po drugiej, wydłuża to operację. Ponadto przyżeganie może prowadzić do uszkodzenia części tkanki.
      Specjaliści z Teksasu i Kalifornii wykazali podczas eksperymentów na myszach, że ich nowy laser pozwala na bezkrwawą resekcję tkanki. Ich system składa się z urządzenia do koherencyjnej tomografii optycznej (OCT), które zapewnia obraz w mikroskopowej rozdzielczości, bazującego na iterbie lasera do koagulacji naczyń krwionośnych oraz wykorzystującego tul lasera do cięcia tkanki.
      Maksymalna moc lasera iterbowego wynosi 3000 W, a urządzenie pozwala na dobranie częstotliwości i długości trwania impulsów w zakresie od 50 mikrosekund do 200 milisekund, dzięki czemu możliwa jest skuteczna koagulacja różnych naczyń krwionośnych. Laser ten emituje światło o długości 1,07 mikrometra. Z kolei laser tulowy pracuje ze światłem o długości fali 1,94 mikrometra, a jego średnia moc podczas resekcji tkanki wynosi 15 W. Twórcy nowej platformy połączyli oba lasery w jednym biokompatybilnym włóknie, którym można precyzyjnie sterować dzięki OCT.
      Opracowanie tej platformy możliwe było dzięki postępowi w dwóch kluczowych dziedzinach. Pierwszą jest laserowa dozymetria, wymagana do koagulacji naczyń krwionośnych o różnych rozmiarach. Wcześniej duże naczynia, o średnicy 250 mikrometrów i większej, nie poddawały się laserowej koagulacji z powodu szybkiego wypływu krwi. Mój kolega Nitesh Katta położył podstawy naukowe pod metodę dozymetrii laserowej pozwalającej na koagulowanie naczyń o średnicy do 1,5 milimetra, mówi główny twórca nowej platformy, Thomas Milner.
      Drugie osiągnięcie to odpowiednia metodologia działań, która pozwala na osiągnięcie powtarzalnej i spójnej ablacji różnych typów tkanki dzięki głębiej penetrującym laserom. Jako, że laserowa ablacja jest zależna od właściwości mechanicznych tkanki, cięcia mogą być niespójne, a w niektórych przypadkach mogą skończyć się katastrofalną niestabilnością cieplną. Nasza platforma rozwiązuje oba te problemy i pozwala na powtarzalne spójne cięcie tkanki miękkiej jak i sztywnej, takiej jak tkanka chrzęstna.
      Na łamach Biomedical Optics Express twórcy nowej platformy zapewniają, że w polu operacyjnym nie pojawia się krew, jakość cięcia jest odpowiednia i obserwuje się jedynie niewielkie uszkodzenia termiczne tkanki.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Łazik Perseverance wylądował na Marsie po trwającej ponad pół roku podróży. W tym czasie był narażony na oddziaływanie dużych dawek promieniowania kosmicznego, które dodatkowo mogło zostać gwałtownie zwiększone przez koronalne wyrzuty masy ze Słońca. Na takie właśnie szkodliwe dla zdrowia promieniowanie narażeni będą astronauci podróżujący na Marsa. W przeciwieństwie do załogi Międzynarodowej Stacji Kosmicznej nie będą oni chronieni przez ziemską magnetosferę. Dlatego też wszelkie metody skrócenia podróży są na wagę zdrowia i życia.
      Emmanuel Duplay i jego koledzy z kanadyjskiego McGill University zaprezentowali na łamach Acta Astronautica interesującą koncepcję laserowego systemu napędowy, który mógłby skrócić załogową podróż na Marsa do zaledwie 45 dni.
      Pomysł na napędzanie pojazdów kosmicznych za pomocą laserów nie jest niczym nowym. Jego olbrzymią zaletą jest fakt, że system napędowy... pozostaje na Ziemi. Jedną z rozważanych technologii jest wykorzystanie żagla słonecznego przymocowanego do pojazdu. Żagiel taki wykorzystywałby ciśnienie fotonów wysyłanych w jego kierunku z laserów umieszczonych na Ziemi. W ten sposób można by rozpędzić pojazd do nieosiągalnych obecnie prędkości.
      Jednak system taki może zadziałać wyłącznie w przypadku bardzo małych pojazdów. Dlatego Duplay wraz z zespołem proponują rozwiązanie, w ramach którego naziemny system laserów będzie rozgrzewał paliwo, na przykład wodór, nadając pęd kapsule załogowej.
      Pomysł Kanadyjczyków polega na stworzeniu systemu laserów o mocy 100 MW oraz pojazdu załogowego z odłączanym modułem napędowym. Moduł składałby się z olbrzymiego lustra i komory wypełnionej wodorem. Umieszczone na Ziemi lasery oświetlałby lustro, które skupiałoby światło na komorze z wodorem. Wodór byłby podgrzewany do około 40 000 stopni Celsjusza, gwałtownie by się rozszerzał i uchodził przez dyszę wylotową, nadając pęd kapsule załogowej. W ten sposób, w ciągu kilkunastu godzin ciągłego przyspieszania kapsuła mogłaby osiągnąć prędkość około 14 km/s czyli ok. 50 000 km/h, co pozwoliłoby na dotarcie do Marsa w 45 dni. Sam system napędowy, po osiągnięciu przez kapsułę odpowiedniej prędkości, byłby od niej automatycznie odłączany i wracałby na Ziemię, gdzie można by go powtórnie wykorzystać.
      Drugim problemem, obok stworzenia takiego systemu, jest wyhamowanie pojazdu w pobliżu Marsa. Naukowcy z McGill mówią, że można to zrobić korzystając z oporu stawianego przez atmosferę Czerwonej Planety, jednak tutaj wciąż jest sporo niewiadomych.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Specjaliści od dawna poszukują bezpośredniego związku pomiędzy aktywnością neuronów w mózgu, a aktywnością bakterii w układzie pokarmowym. Francuscy uczeni z Instytutu Pasteura poinformowali właśnie na łamach Science, że w modelu zwierzęcym neurony w podwzgórzu bezpośrednio wykrywają zmiany aktywności bakterii w jelitach i odpowiednio dostosowują do tego apetyt i temperaturę ciała myszy. To dowodzi, że istnieje bezpośrednia komunikacja pomiędzy mikrobiomem jelit a mózgiem. Być może uda się to wykorzystać do opracowania metod walki z cukrzycą czy otyłością.
      Związki uwalniane przez mikrobiom trafiają do krwi i mogą wpływać na różne procesy fizjologiczne gospodarza, takie jak działanie układu odpornościowego, metabolizm czy funkcje mózgu. Metabolity mikroorganizmów, w tym krótkołańcuchowe kwasy tłuszczowe i pochodne tryptofanu, regulują bardzo wiele procesów. Składowe strukturalne mikroorganizmów są jednak wykrywane przez receptory wykrywające wzorce (PRR), które sygnalizują obecność wirusów, bakterii i grzybów na błonach śluzowych, w tkankach i komórkach. Wiemy, że składniki bakteryjne wpływają na działanie mózgu, a PRR są powiązane z zaburzeniami jego pracy. Jednak nie wiemy, czy neurony w mózgu mogą bezpośrednio wykrywać komponenty bakteryjne i czy bakterie mogą regulować procesy fizjologiczne poprzez regulowanie neuronów w mózgu, stwierdzają autorzy badań.
      Naukowcy skupili się na receptorze NOD2 obecnym w komórkach odpornościowych. Należy on do grupy rozpoznających wzorce receptorów wewnątrzkomórkowych. Receptor ten wykrywa muropeptydy wchodzące w skład ścian komórkowych bakterii. Wiadomo, że u myszy, w neuronach których nie dochodzi do ekspresji Nod2, pojawiają się zmiany odnośnie spożywania pokarmu, zakładania gniazda i temperatury ciała. Naukowcy wykorzystali więc techniki obrazowania, by zidentyfikować te obszary mózgu, które reagują na doustne podawanie muropeptydów. Sprawdzali też, jak zmieniała się aktywność neuronów po podaniu myszom muropeptydów. Stworzyli też genetycznie zmodyfikowane myszy, w których podwzgórzach nie dochodziło do ekspresji Nod2. To właśnie podwzgórze reguluje temperaturę ciała i przyjmowanie pokarmów.
      Na podstawie tak prowadzonych eksperymentów stwierdzili, że do ekspresji receptora NOD2 dochodzi w różnych regionach mózgu myszy, w szczególności zaś w podwzgórzu. A w kontakcie z muropeptydami ekspresja ta jest tłumiona.
      Muropeptydy obecne w jelitach, krwi i mózgu to dowody na proliferację bakterii. To niezwykłe odkrycie pokazuje, że fragmenty bakterii bezpośrednio wpływają na tak ważny ośrodek w mózgu, jakim jest podwzgórze, o którym wiemy, że reguluje kluczowe funkcje organizmu, jak temperatura, reprodukcja, głód i pragnienie, stwierdzają naukowcy.
      Uczeni mają nadzieję, że dzięki zdobytej wiedzy i przyszłym interdyscyplinarnym badaniom – w które powinni zostać zaangażowani neurolodzy, immunolodzy i mikrobiolodzy – powstaną w przyszłości nowe leki skuteczniej zwalczające takie zaburzenia metaboliczne jak otyłość i cukrzyca.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...