Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Galaktyki nie potrzebują ciemnej materii? Coraz większy rozdźwięk między teorią a obserwacjami

Rekomendowane odpowiedzi

Międzynarodowy zespół naukowy, na którego czele stoją uczeni z Holandii, informuje, że nie znalazł śladów ciemnej materii w galaktyce AGC 114905. Obecnie powszechne jest przekonanie, że galaktyki mogą istnieć wyłącznie dzięki ciemnej materii, której oddziaływanie utrzymuje je razem.

Przed dwoma laty Pavel Mancera Piña i jego zespół z Uniwersytetu w Groningen poinformowali o zidentyfikowaniu sześciu galaktyk, zawierających niewiele lub nie zawierających w ogóle ciemnej materii. Wówczas usłyszeli od swoich kolegów, by lepiej poszukali, a przekonają się, że musi tam ona być. Teraz, po prowadzonych przez 40 godzin obserwacjach za pomocą Very Large Array (VLA) uczeni potwierdzili to, co zauważyli wcześniej – istnienie galaktyk bez ciemnej materii.

AGC 114905 znajduje się w odległości 250 milionów lat świetlnych od Ziemi. To skrajnie rozproszona galaktyka (UDG – ultra diffuse galaxy) karłowata, ale określenie „karłowata” odnosi się w jej przypadku do jasności, a nie wielkości. Galaktyka jest bowiem wielkości Drogi Mlecznej, ale zawiera około 1000-krotnie mniej gwiazd. Przeprowadzone obserwacje i analizy przeczą przekonaniu, jakoby wszystkie galaktyki, a już na pewno karłowate UDG, mogły istnieć tylko dzięki utrzymującej je razem ciemnej materii.

Pomiędzy lipcem a październikiem 2020 roku naukowcy przez 40 godzin zbierali za pomocą VLA dane dotyczące ruchu gazu w tej galaktyce. Na podstawie obserwacji stworzyli grafikę pokazującą odległość gazu od galaktyki na osi X oraz jego prędkość obrotową na osi Y. To standardowy sposób badania obecności ciemnej materii. Tymczasem analiza wykazała, że ruch gazu w AGC 114905 można całkowicie wyjaśnić odwołując się wyłącznie do widocznej materii.

Tego oczekiwaliśmy i spodziewaliśmy się, gdyż potwierdza to nasze wcześniejsze obserwacje. Problem jednak pozostaje, gdyż obecnie obowiązujące teorie mówią, że AGC 114905musi zawierać ciemną materię. Nasze obserwacje wskazują, że jej tam nie ma. Po kolejnych badaniach mamy zatem coraz większą rozbieżność między teorią a obserwacjami, stwierdza Pavel Mancera Piña.

Naukowcy próbują więc wyjaśnić, co stało się z ciemną materią. Wedle jednej z wysuniętych przez nich hipotez, AGC 114905 mogłaby zostać pozbawiona ciemnej materii przez wielkie sąsiadujące z nią galaktyki. Problem w tym, że nie ma takich galaktyk. Zeby wyjaśnić ten brak ciemnej materii na gruncie powszechnie akceptowanego modelu kosmologicznego Lambda-CDM musielibyśmy wprowadzić do niego parametry o ekstremalnych wartościach, znajdujących się daleko poza akceptowanym zakresem. Również na gruncie alternatywnego modelu – zmodyfikowanej dynamiki newtonowskiej – nie jesteśmy w stanie wyjaśnić ruchu gazu w tej galaktyce.

Uczeni mówią, że istnieje pewne założenie, które mogłoby zmienić wnioski z ich badań. Założeniem tym jest kąt, pod jakim sądzą, że obserwowali AGC 114905. Jednak kąt ten musiałby się bardzo mocno różnić od naszych założeń, by we wnioskach było miejsce na istnienie ciemnej materii, mówi współautor badań Tom Oosterloo. Tymczasem zespół badań kolejną UDG. Jeśli i tam nie znajdzie śladów ciemnej materii, będzie to bardzo silnym potwierdzeniem dotychczasowych spostrzeżeń.

Warto tutaj przypomnieć, że już 3 lata temu donosiliśmy, że zespół z Yale University odkrył pierwszą galaktykę bez ciemnej materii. Metoda wykorzystana przez Holendrów jest bardziej wiarygodna i odporna na zakłócenia.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Czyli wygląda na to, że to argument za istnieniem "5 siły" odpychającej na dużych odległościach w pustkach między supergromadami galaktyk.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 6.12.2021 o 16:14, Ergo Sum napisał:

Czyli wygląda na to, że to argument za istnieniem "5 siły" odpychającej na dużych odległościach w pustkach między supergromadami galaktyk.


Nie. Modele są do bani. Nie ma żadnych dodatkowych sił. Co niektórzy nie umieją stworzyć jedynie prawidłowego modelu w oparciu o lekko zmodyfikowaną fizykę, natomiast inni umieją:
Oczywiście to tylko modele, ale nie potrzebują ciemnej materii, nawet nie potrzebują różowej materii:

https://www.researchgate.net/publication/326988843_An_Explanation_for_Galaxy_Rotation_Rates_without_Requiring_Dark_Matter  

Edytowane przez l_smolinski

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
On 12/7/2021 at 5:08 PM, l_smolinski said:


Nie. Modele są do bani. Nie ma żadnych dodatkowych sił. Co niektórzy nie umieją stworzyć jedynie prawidłowego modelu w oparciu o lekko zmodyfikowaną fizykę, natomiast inni umieją:
Oczywiście to tylko modele, ale nie potrzebują ciemnej materii

Artykuł raczej umacnia koncepcję ciemnej materii, lecz wskazuje, że może nie być tak jednorodna jak zakładaliśmy wcześniej. Opisywana galaktyka na pewno ma w centrum czarną dziurę wokół której wirują gwiazdy i gaz, lecz ruch gazu w AGC 114905 można wyjaśnić na podstawie oddziaływań grawitacyjnych widzialnej materii zgodnie ze standardowymi równaniami newtonowskimi, a koncepcje alternatywne takie jak MOND czy zaproponowane hipotetyczne "pożeranie" czasoprzestrzeni przez czarną dziurę nie znajdują tu zastosowania.

  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Gdyby większość ciemnej materii istniała nie w postaci w formie cząstek, a mikroskopijnych czarnych dziur, to mogłyby one wpływać na orbitę Marsa tak, że bylibyśmy w stanie wykryć to za pomocą współczesnej technologii. Zatem zmiany orbity Czerwonej Planety mogłyby posłużyć do szukania ciemnej materii, uważają naukowcy z MIT, Uniwersytetu Stanforda i Uniwersytetu Kalifornijskiego w Santa Cruz. A wszystko zaczęło się od odrodzenia hipotezy z lat 70. XX wieku i pytania o to, co stałoby się z człowiekiem, przez którego przeszłaby miniaturowa czarna dziura.
      Pomysł, że większość ciemnej materii, której wciąż nie potrafimy znaleźć, istnieje w postaci miniaturowych czarnych dziur, narodził się w latach 70. Wysunięto wówczas hipotezę, że u zarania wszechświata z zapadających się chmur gazu powstały niewielkie czarne dziury, które w miarę ochładzania się i rozszerzania wszechświata, rozproszyły się po nim. Takie czarne dziury mogą mieć wielkość pojedynczego atomu i masę największych znanych asteroid. W ostatnich latach hipoteza ta zaczęła zdobywać popularność w kręgach naukowych.
      Niedawno jeden z autorów badań, Tung Tran, został przez kogoś zapytany, co by się stało, gdyby taka  pierwotna czarna dziura przeszła przez człowieka. Tran chwycił za coś do pisania i wyliczył, że gdyby tego typu czarna dziura minęła przeciętnego człowieka w odległości 1 metra, to osoba taka zostałaby w ciągu 1 sekundy odrzucona o 6 metrów.  Badacz wyliczył też, że prawdopodobieństwo, by taki obiekt znalazł się w pobliżu kogokolwiek na Ziemi jest niezwykle małe.
      Jednak Tung postanowił sprawdzić, co by się stało, gdyby miniaturowa czarna dziura przeleciała w pobliżu Ziemi i spowodowała niewielkie zmiany orbity Księżyca. Do pomocy w obliczeniach zaprzągł kolegów. Wyniki, które otrzymaliśmy, były niejasne. W Układzie Słonecznym mamy do czynienia z tak dynamicznym układem, że inne siły mogłyby zapobiec takim zmianom, mówi uczony.
      Badacze, chcąc uzyskać jaśniejszy obraz, stworzyli uproszczoną symulację Układu Słonecznego składającego się z wszystkich planet i największych księżyców. Najdoskonalsze symulacje Układu biorą pod uwagę ponad milion obiektów, z których każdy wywiera jakiś wpływ na inne. Jednak nawet nasza uproszczona symulacja dostarczyła takich danych, które zachęciły nas do bliższego przyjrzenia się problemowi, wyjaśnia Benjamin Lehmann z MIT.
      Na podstawie szacunków dotyczących rozkładu ciemnej materii we wszechświecie i masy miniaturowych czarnych dziur naukowcy obliczyli, że taka wędrująca we wszechświecie czarna dziura może raz na 10 lat trafić do wewnętrznych regionów Układu Słonecznego. Wykorzystując dostępne symulacje rozkładu i prędkości przemieszczania się ciemnej materii w Drodze Mlecznej, uczeni symulowali przeloty tego typu czarnych dziur z prędkością około 241 km/s. Szybko odkryli, że o ile efekty przelotu takiej dziury w pobliżu Ziemi czy Księżyca byłyby trudne do obserwowania, gdyż ciężko byłoby stwierdzić, że widoczne zmiany wywołała czarna dziura, to w przypadku Marsa obraz jest już znacznie jaśniejszy.
      Z symulacji wynika bowiem, że jeśli pierwotna czarna dziura przeleciałaby w odległości kilkuset milionów kilometrów od Marsa, po kilku latach orbita Czerwonej Planety zmieniłaby się o około metr. To wystarczy, by zmianę taką wykryły instrumenty, za pomocą których badamy Marsa.
      Zdaniem badaczy, jeśli w ciągu najbliższych dziesięcioleci zaobserwujemy taką zmianę, powinniśmy przede wszystkim sprawdzić, czy nie została ona spowodowana przez coś innego. Czy to nie była na przykład nudna asteroida, a nie ekscytująca czarna dziura. Na szczęście obecnie jesteśmy w stanie z wieloletnim wyprzedzeniem śledzić tak wielkie asteroidy, obliczać ich trajektorie i porównywać je z tym, co wynika z symulacji dotyczących pierwotnych czarnych dziur, przypomina profesor David Kaiser z MIT.
      A profesor Matt Caplan, który nie był zaangażowany w badania, dodaje, że skoro mamy już obliczenia i symulacje, to pozostaje najtrudniejsza część – znalezienie i zidentyfikowanie prawdziwego sygnału, który potwierdzi te rozważania.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Japoński akcelerator cząstek SuperKEKB pobił światowy rekord świetlności. Pracujący przy nim naukowcy obiecują, że to dopiero początek. W ciągu najbliższych lat chcą zwiększyć świetlność urządzenia aż 40-krotnie, co ma pozwolić zarówno na odkrycie ciemnej materii, jak i wyjście z fizyką poza Model Standardowy. Mamy nadzieję, że akcelerator pozwoli nam wykryć ciemną materię – o ile ona istnieje – i badać ją w niedostępny obecnie sposób, mówi profesor Kay Kinoshita z University of Cincinnati.
      Świetlność akceleratora to liczba kolizji, która w nim zachodzi. Podczas tych zderzeń powstają nowe cząstki. Im więc więcej zderzeń, tym więcej cząstek, więcej danych i większa szansa n a zarejestrowanie czegoś nowego.
      SuperKEKB zderza pozytony i elektrony przyspieszane w 3-kilometrowym tunelu. Akcelerator został uruchomiony w 2018 roku i naukowcy ciągle pracują nad zwiększaniem jego jasności. Profesor Alan Schwartz i jego studenci z University of Cincinnati zaprojektowali i zbudowali jeden z detektorów akceleratora. To krok milowy w projektowaniu akceleratorów. SuperKEKB wykorzystuje architekturę tzw. „nano strumieni”. W technice tej strumienie cząstek są ściskane wzdłuż osi pionowej, dzięki czemu są bardzo cienkie, wyjaśnia Schwartz. To pierwszy na świecie akcelerator, który korzysta z tej techniki.
      Ze względu na rozmiary cząstek, szansa, że dojdzie do zderzenia, jest niewielka. Im bardziej ściśnięty strumień, tym większe zagęszczenie cząstek i tym większe prawdopodobieństwo zderzeń. Obecnie wysokość wiązki w punkcie zderzenia wynosi 220 nanometrów. W przyszłości ma to być zaledwie 50 nanometrów, czyli około 1/1000 grubości ludzkiego włosa.
      Profesor Kay Kinoshita poświęciła całą swoją naukową karierę zagadnieniu zwiększania świetlności akceleratorów. Uczona pracuje nad tym zagadnieniem od 1982 roku. To bardzo interesujące, gdyż jest bardzo wymagające. Wiesz, że robisz coś, czego nikt nigdy nie zrobił, mówi.
      Poprzednik SuperKEKB, akcelerator KEKB, który działał w latach 1999–2010 w KEK (Organizacja Badań nad Akceleratorami Wysokich Energii), również był światowym rekordzistą. Urządzenie pracowało ze świetlnością 2,11x1034 cm-2s-1. Dopiero w 2018 roku rekord ten został pobity przez Wielki Zderzacz Hadronów, który osiągnął świetlność 2,14x1034 cm-2s-1. Rekord LHC nie utrzymał się długo, dnia 15 czerwca 2020 roku SuperKEKB osiągnął świetlność 2,22x1034 cm-2s-1. Już tydzień później, 21 czerwca naukowcy poinformowali o nowym rekordzie. Teraz SuperKEKB pracuje ze świetlnością wynoszącą 2,40x1034 cm-2s-1.
      W ciągu najbliższych lat świetlność SuperKEKB ma wzrosnąć 40-krotnie. Docelowo ma ona wynieść 8x1035 cm-2s-1.
      Sukces SuperKEKB to sukces międzynarodowej współpracy. Nadprzewodzące magnesy, które ostatecznie skupiają strumienie cząstek zostały zbudowane we współpracy z amerykańskimi Brookhaven National Laboratory oraz Fermi National Accelerator Laboratory. Systemy monitorowania kolizji to dzieło SLAC National Accelerator Laboratory i University of Hawaii. Naukowcy ze Szwajcarii (CERN), Francji (IJCLab), Chin (IHEP) i USA (SLAC) biorą udział w pracach i badaniach, w których wykorzystywany jest akcelerator. Wykorzystujący diament system monitorowania promieniowania oraz system przerywania wiązki to dzieło włoskich Narodowego Instytutu Fizyki Jądrowej oraz Uniwersytetu w Trieście, a system monitorowania jasności powstał w Rosji.
      Wiązki elektronów i pozytonów rozpędzane w SuperKEKB zderzają się w centrum detektora Belle II, który opisywaliśmy przed 2 laty. To niezwykłe urządzenie zostało zbudowane przez grupę 1000 fizyków i inżynierów ze 119 uczelni z 26 krajów świata. I to właśnie wewnątrz Belle II naukowcy mają nadzieję znaleźć ciemną materię i rozpocząć badania jej właściwości.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Teleskop Webba dostarczył wielu wyjątkowych informacji, które pozwalają lepiej zrozumieć wszechświat. Były wśród nich i takie, które spowodowały, że zaczęto mówić o kryzysie w kosmologii i konieczności rewizji modeli. Jak bowiem stwierdzono, we wczesnym wszechświecie istniały galaktyki znacznie bardziej masywne, niż wynika to z obecnie stosowanych modeli. Tak masywne galaktyki nie powinny pojawić się tak krótko po Wielkim Wybuchu. Autorzy najnowszej pracy twierdzą jednak, że – przynajmniej niektóre z nich – są znacznie mniej masywne, niż się wydawało.
      Autorką najnowszych badań jest Katherine Chworowsky i jej zespół z University of Texas w Austin. Jak zauważyli badacze, galaktyki położone dalej, a więc starsze, wciąż były mniejsze od tych, położonych bliżej. Wszystko się więc zgadzało. To była wskazówka, że warto przyjrzeć się bliżej temu zjawisku.
      Naukowcy wykonali więc szczegółową analizę danych z Webba zebranych w ramach projektu Cosmic Evolution Early Release Science (CEERS) i znaleźli w nich sygnały świadczące o istnieniu szybko przemieszczającego się wodoru. Wszystko więc wskazuje na to, że galaktyki, które wydają się zbyt masywne, jak na swój wiek, zawierają czarne dziury, które w bardzo szybkim tempie wchłaniają otaczający je gaz. Ten szybko poruszający się gaz emituje tak dużo światła, że wydaje się, iż galaktyki zawierają znacznie więcej gwiazd, niż w rzeczywistości. A więc, że są znacznie bardziej masywne. Gdy badacze usunęli te „podejrzane” galaktyki z analizy, okazało się, ze cała reszta starych galaktyk mieści się w ramach przewidzianych obecnymi modelami. Tak więc standardowy model kosmologiczny nie przeżywa kryzysu. Za każdym razem, gdy mamy teorię, która tak długo wytrzymała próbę czasu, potrzebujemy przytłaczających dowodów, by ją obalić. A tak nie jest w tym przypadku, mówi profesor Steven Finkelstein, którego badania w ramach projektu CEERS dostarczyły dowodów wykorzystanych przez zespół Chworowsky.
      O ile więc naukowcom udało się rozwiązać główny problem dotyczący zbyt dużej masy galaktyk we wczesnym wszechświecie, nierozwiązana pozostała jeszcze jedna zagadka. W danych Webba widzimy bowiem niemal dwukrotnie więcej masywnych starych galaktyk, niż wynika to z modelu kosmologicznego. Może we wczesnym wszechświecie galaktyki bardziej efektywnie zmieniały gaz w gwiazdy, zastanawia się Chworowsky.
      Gwiazdy powstają, gdy gaz schłodzi się na tyle, że zapada się pod wpływem grawitacji. Dochodzi wówczas do jego kondensacji w gwiazdę. Jednak w miarę kurczenia się obłoku gazu, jego temperatura wzrasta i pojawia się ciśnienie skierowane na zewnątrz. W naszym kosmicznym sąsiedztwie istnieje równowaga obu tych sił - skierowanego do wewnątrz ciśnienia chłodnego gazu i skierowanego na zewnątrz ciśnienia zapadającej się gwiazdy, przez co gwiazdy tworzą się bardzo powoli. Być może jednak we wczesnym wszechświecie, który był bardziej gęsty od obecnego, ciśnienie skierowane na zewnątrz napotykało większy opór, więc gwiazdy tworzyły się szybciej.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Nowe dane z najczulszego na świecie wykrywacza ciemnej materii pozwalają zawęzić obszar poszukiwań, przybliżając nas do odkrycia jednej z największych tajemnic wszechświata. Jednocześnie jednak pokazują, że odnalezienie cząstek ciemnej materii będzie bardzo trudne. O ile w ogóle zostaną znalezione, gdyż eksperyment o którym mowa – LUX-ZEPLIN – szuka słabo oddziałujących masywnych cząstek (WIMP). Nigdy ich nie zarejestrowano, jednak są one jednym z głównych kandydatów na cząstki, z których składa się ciemna materia.
      Nowe dane opublikowano przed trzema dniami podczas TeV Particle Astrophysics 2024 Conference w Chicago oraz LIDINE 2024 Conference w São Paulo.
      Znajdujący się w Sanford Underground Research Facility w Dakocie Południowej LUX-ZEPLIN to najbardziej czuły eksperyment poszukujący ciemnej materii, przede wszystkim WIMPów. Pracuje przy nim ponad 250 naukowców z USA, Wielkiej Brytanii, Szwajcarii, Australii, Portugalii i Korei Południowej.
      Najnowsze dane oznaczają znaczący postęp w stosunku do wcześniejszych poszukiwań WIMP. Przeszukaliśmy wielki zakres mas, w których cząstki ciemnej materii mogłyby wchodzić w interakcje ze zwykłą materią i nie znaleźliśmy ciemnej materii. Jej poszukiwania to zdecydowanie maraton, a nie sprint. LZ zebrał trzykrotnie więcej danych, niż dotychczas przeanalizowaliśmy, więc piłka wciąż jest w grze, mówi profesor Henning Flaecher z Uniwersytetu w Bristolu.
      LZ nie znalazł WIMPów powyżej masy 9 GeV/c2. Trzeba tutaj zauważyć, że 1 GeV/c2 to masa atomu wodoru. Jeśli porównamy poszukiwania ciemnej materii z szukaniem zakopanego skarbu, to wykopaliśmy 5-krotnie głębszą dziurę niż wcześniejsi poszukiwacze. Jednak aby to zrobić nie wystarczy i milion łopat. Trzeba stworzyć nowe urządzenie, obrazowo opisuje wysiłki naukowców profesor Scott Kravitz z University of Texas w Austin.
      Wykrywacz musi pracować przez 1000 dni, by możliwe było wykorzystanie jego maksymalnej czułości. Obecna analiza zawiera dane z 280 dni pracy. Pochodzą one z 220 dni pomiędzy marcem 2023 a kwietniem 2024 oraz z 60 dni podczas pierwszej kampanii badawczej. Pełny zestaw 1000 dni pracy naukowcy chcą osiągnąć przed końcem 2028 roku.
      LZ usiłuje zarejestrować interakcje pomiędzy materią a ciemną materią. Urządzenie musi być więc niezwykle precyzyjnie skalibrowane, by maksymalnie zredukować szum tła. Wykrywacz znajduje się niemal 1,5 kilometra pod ziemią. To w znacznym stopni chroni go przed promieniowaniem kosmicznym. Jego sercem jest zbiornik zawierający 7 ton czystego ksenonu oraz 500 fotodetektorów, które mają zarejestrować rozbłysk światła pochodzący z interakcji pomiędzy WIMP a jądrem ksenonu.
      Urządzenie zbudowane zostało z tysięcy ultraczystych elementów o bardzo niskim promieniowaniu. Jego konstrukcja jest warstwowa, przypomina cebulę. Każda z warstw ma blokować zewnętrzne promieniowanie lub śledzić interakcje pomiędzy cząstkami, by wykluczyć fałszywe sygnały. Podczas najnowszej analizy po raz pierwszy zastosowano też technikę celowego dodawania fałszywych sygnałów. Dzięki temu podczas analizy naukowcy wiedzą, że mają w danych fałszywe sygnały – nie wiedzą jednak które to – a to pozwala na uniknięcie sytuacji, w której zbyt pochopnie uzna się jakiś sygnał na wskazujący na istnienie WIMP. Ludzie mają tendencję do dostrzegania wzorców w danych. Jest więc bardzo ważnym, by unikać wszelkich tego typu pomyłek, dodaje profesor Scott Haselschwardt z University of Michigan.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po 10 latach pionierskiej pracy naukowcy z amerykańskiego SLAC National Accelerator Laboratory ukończyli wykrywacze ciemnej materii SuperCDMS. Dwa pierwsze trafiły niedawno do SNOLAB w Ontario w Kanadzie. Będą one sercem systemu poszukującego dość lekkich cząstek ciemnej materii. Urządzenia mają rejestrować cząstki o masach od 1/2 do 10-krotności masy protonu. W tym zakresie będzie to najbardziej czuły na świecie wykrywacz ciemnej materii.
      Twórcy detektorów mówią, że przy ich budowie wiele się nauczyli i stworzyli wiele interesujących technologii, w tym elastyczne kable nadprzewodzące, elektronikę działającą w ekstremalnie niskich temperaturach czy lepiej izolowane systemy kriogeniczne, dzięki czemu całość jest znacznie bardziej czuła na ciemną materię. A dodatkową zaletą całego eksperymentu jest jego umiejscowienie 2 kilometry pod ziemią, co pozwoli na wyeliminowanie znaczniej części zakłóceń ze strony promieniowania kosmicznego. SNOLAB i SuperCDMS są dla siebie stworzone. Jesteśmy niesamowicie podekscytowani faktem, że detektory SuperCDMS mają potencjał, by bezpośrednio zarejestrować cząstki ciemnej materii i znacząco zwiększyć nasza wiedzę o naturze wszechświata, mówi Jodi Cooley, dyrektor SNOLAB. Zrozumienie ciemnej materii to jedno z najważniejszych zadań nauki, dodaje JoAnne Hewett ze SLAC.
      Wiemy, że materia widzialna stanowi zaledwie 15% wszechświata. Cała reszta to ciemna materia. Jednak nikt nie wie, czym ona jest. Wiemy, że istnieje, gdyż widzimy jej oddziaływanie grawitacyjne z materią widzialną. Jednak poza tym nie potrafimy jej wykryć.
      Eksperyment SuperCDMS SNOLAB to próba zarejestrowania cząstek tworzących ciemną materię. Naukowcy chcą w nim wykorzystać schłodzone do bardzo niskich temperatur kryształy krzemu i germanu. Stąd zresztą nazwa eksperymentu – Cryogenic Dark Matter Search (CDMS). Uczeni mają nadzieję, że w temperaturze o ułamek stopnia wyższej od zera absolutnego uda się zarejestrować wibracje kryształów powodowane interakcją z cząstkami ciemnej materii. Takie kolizje powinny zresztą wygenerować pary elektron-dziura, które – przemieszczając się w krysztale – wywołają kolejne wibracje, wzmacniając w ten sposób sygnał.
      Żeby jednak tego dokonać, detektory muszą zostać odizolowane od wpływu czynników zewnętrznych. Dlatego też eksperyment będzie prowadzony w SNOLAB, laboratorium znajdującym się w byłej kopalni niklu, ponad 2000 metrów pod ziemią.
      Stopień trudności w przeprowadzeniu tego typu eksperymentów jest olbrzymi. Nie tylko bowiem konieczne było stworzenie nowatorskich wykrywaczy, co wymagało – jak już wspomnieliśmy – 10 lat pracy. Wyzwaniem był też... transport urządzeń. Aby chronić je przed promieniowaniem kosmicznym, należało jak najszybciej dostarczy je z USA do Kanady. Oczywiście na myśl przychodzi przede wszystkim transport lotniczy. Jednak im wyżej się wzniesiemy, tym cieńsza warstwa atmosfery nas chroni, zatem tym więcej promieniowania kosmicznego do nas dociera.
      Wybrano więc drogę lądową, ale... naokoło. Pomiędzy Menlo Park w Kalifornii, gdzie powstały wykrywacze, a kanadyjską prowincją Ontario znajdują się Góry Skaliste. Ciężarówka z wykrywaczami musiałaby więc wjechać na sporą wysokość nad poziomem morza, co wiązałoby się z większym promieniowaniem docierającym do detektorów. Dlatego też jej trasa wiodła na południe, przez Teksas. Już następnego dnia po dotarciu do Ontario urządzenia zostały opuszczone pod ziemię, gdzie czekają na instalację. Jeszcze w bieżącym roku do Kanady trafią kolejne SuperCDMS, a wstępne przygotowania do uruchomiania laboratorium mają zakończyć się w 2024 roku. Naukowcy mówią, że po 3-4 latach pracy laboratorium powinno zebrać na tyle dużo danych, że zdobędziemy nowe informacje na temat ciemnej materii.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...