Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Broń atomowa może uchronić Ziemię przed nadlatującymi asteroidami

Rekomendowane odpowiedzi

Popularnym motywem filmów katastroficznych jest zagrożenie Ziemi ze strony asteroidy. Wizją taką zajmują się nie tylko filmowcy, ale też naukowcy i agencje kosmiczne, prowadzące programy ochrony planety przed zagrożeniami. O tym, na ile realny to problem, przekonaliśmy się dobitnie, gdy przed 8 laty nad Czelabińskiem rozpadł się meteoryt. Naukowcy wciąż zastanawiają się, co zrobić, gdyby asteroida leciała w kierunku Ziemi. Autorzy najnowszych badań twierdzą, że rozbicie go nie byłoby takim złym pomysłem, jak się dotychczas wydawało.

Nieproszonych gości z kosmosu możemy z grubsza podzielić na dwie kategorie. Wielkie obiekty, których upadek mógłby zagrozić istnieniu cywilizacji czy nawet naszego gatunku, oraz obiekty mniejsze, zdolne np. do zniszczenia miasta. Te wielkie znamy niemal wszystkie, są one obserwowane, ich trajektorie zostały zbadane i eksperci zapewniają, że w ciągu najbliższych 100 lat żaden z nich nam nie zagraża. A nawet gdyby zagrażał, to współczesna technologia pozwoli na zauważenie takiego obiektu na kilkadziesiąt lat przed uderzeniem w Ziemię, pozostanie zatem sporo czasu na opracowanie i wdrożenie systemu obrony.

Najczęściej rozważanym scenariuszem jest zmiana trajektorii takiego obiektu, czy to poprzez pomalowanie go farbą zmieniającą sposób, w jaki będzie rozgrzewał się od Słońca, czy dołączenie do niego urządzenia, stopniowo spychającego go z kursu czy to rozbicie o jego powierzchnię pojazdu lub materiału wybuchowego. Rozbijanie samej asteroidy jest natomiast bardzo ryzykowne, gdyż na Ziemię mógłby spaść cały deszcz odłamków, a więc powierzchnia zniszczeń będzie znacznie większa. Ponadto trajektorii takich fragmentów nie da się przewidzieć.

Znacznie gorzej wygląda sytuacja w przypadku mniejszych obiektów. Większości z nich nie znamy, a jeśli będziemy mieli szczęście i zauważymy taki obiekt przed wejściem w atmosferę Ziemi, to będzie to na dni lub tygodnie przed upadkiem.
Patrick K. King z Uniwersytetu Johnsa Hopkinsa i Lawrence Livermore National Laboratory (LLNL) oraz jego koledzy z LLNL – Megan Syal, David Dearborn, Robert Managan, J. Owen i Cody Raskin – poinformowali na łamach Acta Astronautica o wynikach symulacji zniszczenia niewielkiego obiektu kosmicznego za pomocą broni atomowej.

King i jego zespół uważają, że użycie broni atomowej byłoby dobrą strategią obrony przed niewielkim późno wykrytym obiektem zagrażającym Ziemi. Na zmianę trajektorii takich późno wykrytych obiektów nie będzie bowiem czasu. W swoich obliczeniach naukowcy skupili się na zbadaniu, w jaki sposób asteroidy o różnych orbitach i różnych prędkościach zachowają się po rozbiciu. Przyjęto przy tym, że zagraża nam asteroida o kształcie podobnym do Bennu i średnicy 100 metrów, czyli ok. 1/5 średnicy Bennu.

Analizy przeprowadzono dla pięciu różnych orbit asteroidy, która na dwa miesiące przed przewidywanym uderzeniem w Ziemię zostałaby trafiona 1-megatonową głowicą atomową. Z obliczeń wynika, że w takim przypadku udałoby się co najmniej 1000-krotnie zmniejszyć masę materiału, który spadnie na planetę. Innymi słowy, 99,9% masy minie planetę. Inaczej wyglądałaby sytuacja, w przypadku większej asteroidy. W jej wypadku eksplozja nie spowodowałaby tak dużego rozproszenia materiału, ale i tak aż 99% jej masy ominęłaby Ziemię. Jednak pod warunkiem, że asteroidę zniszczono by na 6 miesięcy przed uderzeniem w planetę.

Jeśli chcemy ocenić skutki takiego postępowania, to musimy modelować orbity wszystkich fragmentów powstałych w wyniku rozbicia asteroidy. To daleko trudniejsze niż modelowanie orbity pojedynczego obiektu, stopniowo spychanego z kursu, mówi King. Musimy jednak poradzić sobie z tymi obliczeniami, jeśli chcemy oszacować szanse powodzenia strategii polegającej na rozbiciu asteroidy.

Naukowcy podkreślają, że najważniejszym efektem ich pracy jest wykazanie, iż użycie broni atomowej do rozbicia asteroidy to bardzo efektywna metoda obrony na ostatnią chwilę. Skupiliśmy się na obronie ostatniej szansy, czyli na sytuacji, gdy rozbijamy asteroidę na krótko przed jej uderzeniem. W sytuacjach zaś, gdy mamy dużo czasu – dziesiątki lat – znacznie lepiej użyć takiego ładunku do zepchnięcia asteroidy z kursu, stwierdza King.

Jeśli zauważymy niebezpieczny obiekt zmierzający w kierunku Ziemi i będzie zbyt późno, by zmienić jego kurs, najlepszym obecnie rozwiązaniem jest rozbić go tak, by większość fragmentów ominęła Ziemię. Tutaj jednak problem się komplikuje. Jeśli rozbijemy asteroidę na kawałki, powstanie chmura odłamków, z których każdy będzie miał własną orbitę wokół Słońca, a ponadto wchodzą tutaj w grę też oddziaływania grawitacyjne zarówno pomiędzy nimi jak i pomiędzy nimi a planetami. Taka chmura będzie miała tendencję do rozciągania się na zakrzywiony strumień rozciągający się wzdłuż oryginalnej trajektorii asteroidy. Od tego, jak szybko się ona rozproszy zależy, jak wiele fragmentów spadnie na Ziemię, dodaje J. Owen.

Jak już informowaliśmy, na rok 2024 NASA planuje test kosmicznego impaktora. Skądinąd jednak wiadomo, że rozbijanie asteroid to niełatwe zadanie i obrona przed nimi może być trudniejsza niż się wydaje.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli to obiekt zwarty to tak, ale zważywszy na to, że asteroidy to często zlepieńce, rozbijanie może zadziałać tak jak strzał z pistoletu w kupę piasku.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy z Curtin University School of Earth and Planetary Sciences i Geological Survey of Western Australia, odkryli najstarszy na Ziemi krater uderzeniowy. Znaleźli go na obszarze North Pole Dome znajdującym się w regionie Pilbara, w którym znajdują się najstarsze skały na naszej planecie. Krater powstał 3,5 miliarda lat temu.
      Przed naszym odkryciem najstarszy znany krater uderzeniowy na Ziemi liczył sobie 2,2 miliarda lat, mówi profesor Tim Johnson i dodaje, że znalezienie starszego krateru w dużym stopniu wpływa na założenie dotyczące historii Ziemi.
      Krater zidentyfikowano dzięki stożkom zderzeniowym. To struktura geologiczna, która powstaje w wyniku szokowego przekształcenia skał. Stożki powstają w pobliżu kraterów uderzeniowych czy podziemnych prób jądrowych. W badanym miejscu stożki powstały podczas upadku meteorytu pędzącego z prędkością ponad 36 000 km/h. Było to potężne uderzenie, w wyniku którego powstał krater o średnicy ponad 100 kilometrów, a wyrzucone szczątki rozprzestrzeniły się po całej planecie.
      Wiemy, że takie zderzenia często miały miejsce na wczesnych etapach powstawania Układu Słonecznego. Odkrycie tego krateru i znalezienie innych z tego samego czasu może nam wiele powiedzieć o pojawieniu się życia na Ziemi. Kratery uderzeniowe tworzą bowiem środowisko przyjazne mikroorganizmom, takie jak zbiorniki z gorącą wodą, dodaje profesor Chris Kirkland.
      Olbrzymia ilość energii, jaka wyzwoliła się podczas uderzenia, mogła mieć wpływ na kształt młodej skorupy ziemskiej, wciskając jedne jej części pod drugie lub wymuszając ruch magmy w górę. Uderzenie mogło tez przyczynić się do powstania kratonu, dużego stabilnego fragmentu skorupy ziemskiej, będącego zalążkiem kontynentu.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Hel jest, po wodorze, najbardziej rozpowszechnionym pierwiastkiem we wszechświecie. Jest jednak najmniej aktywnym pierwiastkiem chemicznym, dlatego też niemal cały hel, który mógł kiedykolwiek istnieć na Ziemi uleciał w przestrzeń kosmiczną, gdyż nie utworzył związków z żadnym innym pierwiastkiem. Taki przynajmniej pogląd panował do tej pory, a teraz może się on zmienić. Naukowcy z Japonii i Tajwanu wykazali właśnie, że w warunkach wysokiego ciśnienia hel może wiązać się z żelazem, co może oznaczać, że olbrzymie ilości helu występują w jądrze Ziemi. Jeśli tak jest, odkrycie to będzie miało olbrzymie znaczenie dla opisu wnętrza naszej planety i może wpłynąć na rozumienie mgławicy, z której powstał Układ Słoneczny.
      W skałach wulkanicznych od dawna wykrywany jest 3He. Izotop ten, w przeciwieństwie do znacznie bardziej rozpowszechnionego 4He, nie powstaje na Ziemi. Uważa się, że głęboko w ziemskim płaszczu istnieją pierwotne materiały, które go zawierają. Eksperymenty przeprowadzone przez japońsko-tajwański zespół rzucają wyzwanie temu przekonaniu.
      Od wielu lat badam procesy geologiczne i chemiczne zachodzące w głębi Ziemi. Biorąc pod uwagę panujące tam temperatury i ciśnienie, prowadzimy eksperymenty, które odzwierciedlają te warunki. Często więc korzystamy z rozgrzewanej laserowo komory diamentowej, mówi profesor Kei Hirose z Uniwersytetu Tokijskiego.
      W tym przypadku naukowcy miażdżyli w imadle diamentowym żelazo i hel. Poddawali je oddziaływaniu ciśnienia od 5 do 54 gigapaskali i temperatury o 1000 do 2820 kelwinów. Okazało się, że żelazo w takich warunkach zawiera nawet 3,3% helu. To tysiące razy więcej, niż uzyskiwano we wcześniejszych podobnych eksperymentach. Profesor Hirose podejrzewa, że częściowo odpowiada za to któryś z nowych elementów eksperymentu.
      Hel bardzo łatwo ucieka do otoczenia w standardowych warunkach temperatury i ciśnienia. Musieliśmy coś wymyślić, by uniknąć tego podczas pomiarów. Mimo, że sam eksperyment prowadziliśmy przy bardzo wysokich temperaturach, pomiarów dokonywaliśmy w warunkach kriogenicznych. W ten sposób uniknęliśmy ucieczki helu i mogliśmy go wykrywać w żelazie, wyjaśnia uczony. Badania wykazały, że hel został wbudowany w strukturę krystaliczną żelaza i pozostawał w niej nawet, gdy ciśnienie uległo zmniejszeniu.
      Wyniki eksperymentu oznaczają, że w jądrze Ziemi może znajdować się hel z mgławicy, która utworzyła Układ Słoneczny. Jeśli tak, to znaczy, że znajduje się tam gaz z mgławicy, a zawierał on też wodór. To zaś może oznaczać, że przynajmniej część wody na naszej planecie pochodzi z tego pierwotnego gazu. Niewykluczone zatem, że specjaliści muszą przemyśleć teorie dotyczące formowania się i ewolucji Ziemi.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Niskie średnie temperatury na Ziemi, które umożliwiły uformowanie się pokryw lodowych na biegunach, są czymś rzadkim w historii naszej planety. Nowe badania, przeprowadzone przez zespół pod kierunkiem naukowców z University of Leeds, dowodzą, że aby takie warunki klimatyczne się pojawiły, musi dojść do zbiegu wielu złożonych procesów. Uczeni badali, dlaczego Ziemia przez zdecydowaną większość swojej historii była znacznie cieplejsza niż obecnie i nie istniały na niej pokrywy lodowe na biegunach.
      Dotychczas proponowano wiele hipotez, które miały wyjaśnić pojawianie się glacjałów na Ziemi. Mówiono o zmniejszonym wulkanizmie, zwiększonym pochłanianiu atmosferycznego węgla przez roślinność czy też o reakcji dwutlenku węgla ze skałami. Ciepłe warunki klimatyczne farenozoiku zostały przerwane przez dwa długotrwałe okresy ochłodzenia, w tym obecny, trwający od około 34 milionów lat. Te chłodniejsze okresy zbiegają się z niższą zawartością CO2 w atmosferze, jednak nie jest jasne, dlaczego poziom CO2 spada, piszą naukowcy na łamach Science Advances.
      Na potrzeby badań stworzyli nowy długoterminowy „Earth Evolution Model”. Jego powstanie było możliwe dzięki ostatnim postępom w technikach obliczeniowych. Model pokazał, że wspomniane ochłodzenia spowodowane były nie pojedynczym procesem, a ich zbiegiem. To wyjaśnia, dlaczego okresy chłodne są znacznie rzadsze od okresów ciepłych.
      Wiemy teraz, że powodem, dla którego żyjemy na Ziemi z pokrywami lodowymi na biegunach, a nie na planecie wolnej od lodu, jest przypadkowy zbieg bardzo małej aktywności wulkanicznej i bardzo rozproszonych kontynentów z wysokimi górami, które powodują duże opady i w ten sposób zwiększają usuwanie węgla z atmosfery. Bardzo ważnym wnioskiem z naszych badań jest stwierdzenie, że naturalny mechanizm klimatyczny Ziemi wydaje się faworyzować istnienie gorącego świata z wysokim stężeniem CO2 i brakiem pokryw lodowych, a nie obecny świat z niskim stężeniem CO2, pokryty częściowo lodem, mówi główny autor badań, Andrew S. Meredith. To prawdopodobnie preferencja systemu klimatycznego Ziemi ku gorącemu klimatowi uchroniła naszą planetę przed katastrofalnym całkowitym zamienieniem naszej planety w lodową pustynię. Dzięki niej życie mogło przetrwać.
      Drugi z głównych autorów badań, profesor Benjamin Mills zauważa, że z badań płyną bardzo ważne wnioski. "Nie powinniśmy spodziewać się, że Ziemia zawsze powróci do chłodniejszego okresu, jaki charakteryzował epokę przedprzemysłową. Obecna Ziemia, z jej pokrywami lodowymi jest czymś nietypowym w historii planety. Jednak ludzkość zależy od tego stanu. Powinniśmy zrobić wszystko, by go zachować i powinniśmy być ostrożni, czyniąc założenia, że zatrzymując emisję powrócimy do stanu sprzed globalnego ocieplenia. W swojej długiej historii klimat Ziemi był przeważnie gorący. Jednak w czasie historii człowieka był chłodny.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Długość, szerokość i głębokość dwóch kanionów znajdujących się po niewidocznej z Ziemi stronie Księżyca są podobne do rozmiarów Wielkiego Kanionu Kolorado, informują naukowcy z Lunar and Planetary Institute (LPI). O ile jednak Wielki Kanion powstawał przez miliony lat, kaniony na Księżycu pojawiły się w czasie krótszym niż... 10 minut.
      Niemal cztery miliardy lat temu asteroida lub kometa przeleciała nad biegunem południowym Księżyca, otarła się o szczyty Malapert i Mouton i uderzyła w powierzchnię. Zderzenie wyrzuciło strumienie skał, które wyrzeźbiły kaniony o rozmiarach ziemskiego Wielkiego Kanionu, mówi główny autor badań, David Kring z Universities Space Research Association do którego należy LPI.
      Obiekt, który utworzył oba kaniony, w chwili uderzenia pędził z prędkością 55 000 kilometrów na godzinę. W wyniku upadku powstał 320-kilometrowy krater uderzeniowy Schrödinger. Przyciągnął on uwagę grupy naukowców, stając się okazją do zbadania wczesnych etapów rozwoju Układu Słonecznego.
      Dzięki danym dostarczonym przez Lunar Reconnaissance Orbiter naukowcy poznali rozmiary kanionów. Vallis Schrödinger ma ok. 270 km długości, ok. 20 km szerokości i 2,7 km głębokości, a Vallis Planck – 280 km długości, 27 szerokości i 3,5 km głębokości, a na długości 860 km rozciągają się kratery uderzeniowe powstałe w wyniku upadku materiału, który go wyrzeźbił.
      Badania pokazały, że kratery powstały w wyniku uderzeń szczątków z upadku asteroidy lub komety. Wyrzucone w wyniku pierwotnego uderzenia skały leciały z prędkością 3600 km/h wywołując kolejne uderzenia, która wyrzeźbiły kaniony. Energia potrzebna do ich powstania była 130-krotnie większa niż energia całej broni atomowej będącej w posiadaniu ludzkości.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Grupa ekspertów postanowiła odpowiedzieć na pytanie, czy pozaziemska cywilizacja o podobnym do naszego poziomie rozwoju technologicznego, byłaby w stanie wykryć Ziemię i zdobyć dowody na istnienie ludzkości, a jeśli tak, to jakie sygnały mogliby wykryć i z jakiej odległości. Zespół, pracujący pod kierunkiem doktor Sofii Sheikh z SETI Institute, składał się ze specjalistów z projektu Characterizing Atmospheric Technosignatures oraz Penn State Extraterrestrial Intelligence Center.
      Do przeprowadzenia analizy – pierwszej tego typu – naukowcy wykorzystali modele teoretyczne. Wykazały one, że pozaziemska cywilizacja z największej odległości mogłaby wykryć sygnały radiowe, takie jak te pochodzące z niedziałającego już Radioteleskopu Arecibo. Obcy mogliby zauważyć je z odległości do 12 000 lat świetlnych. Zatem sygnał taki mogłaby wykryć cywilizacja znajdująca się w połowie odległości między Ziemią a centrum Drogi Mlecznej.
      Radioteleskop Arecibo nie istnieje, więc pozostają nam inne sygnały, na podstawie których można nas odnaleźć. Deep Space Network (DSN), używaną przez NASA sieć komunikacyjną do łączenia się z pojazdami przebywającymi w przestrzeni kosmicznej, obcy mogliby zauważyć z odległości 65 lat świetlnych.
      Jednak tutaj musimy na chwilę się zatrzymać. W obu tych przypadkach – Arecibo i DSN – musimy pamiętać, że podane odległości są większe niż czas, jaki upłynął od uruchomienia tych urządzeń. Zatem ani pierwszy sygnał z Arecibo nie dotarł jeszcze na odległość 1200 lś, ani sygnału z DSN nie można zauważyć obecnie z odległości 65 lat świetlnych.
      Im bliżej Ziemi, tych więcej technosygnatur, sygnałów świadczących o obecności cywilizacji technicznej. I tak sygnatury atmosferyczne, takie jak emisja dwutlenku azotu, są dla nas obecnie łatwiejsze do wykrycia niż były jeszcze dekadę temu. Dzięki takim instrumentom jak Teleskop Webba czy planowany Habitable Worlds Observatory (HWO) możemy zauważyć obcą cywilizację z większej niż wcześniej odległości. Tak więc cywilizacja dysponująca HWO mogłaby dostrzec nas z odległości 5,7 lat świetlnych. To odległość nieco większa, niż dystans dzielący nas od najbliższej gwiazdy, Proximy Centauri. Z podobnej odległości można zarejestrować lasery wycelowane w niebo. Ludzkość czasami korzysta z takich instrumentów jak Deep Space Optical Communications, którego NASA używa do testów technologii komunikacji laserowej w przestrzeni kosmicznej.
      Z odległości 4 lat świetlnych można zauważyć sygnały sieci bezprzewodowych LTE. Z kolei sygnał z Voyagera jest widoczny z 0,97 roku świetlnego.
      Obcy mogliby wykryć też światła miast. Szczególnie te generowane przez lampy sodowe, które mają unikatowe sygnatury. Ich obserwacja jest możliwa z odległości 0,036 roku świetlnego. To 2275 jednostek astronomicznych, a więc obszar położony w pobliżu wewnętrznych krawędzi Obłoku Oorta.
      Z regionów Pasa Kuipera (30–50 au) obcy mogliby odnotować obecność miejskich wysp ciepła, a gdyby mieszkali na Marsie mieliby szansę zauważyć satelity krążące wokół Ziemi.
      Celem badań było pokazanie, w jakim miejscu my sami znajdujemy się, jeśli chodzi o możliwość wykrywania technosygnatur świadczących o obecności pozaziemskich cywilizacji. W SETI nigdy nie zakładamy, że życie i poziom rozwoju technologicznego na innych planetach są takie same jak nasze. Jednak ocena naszych możliwości pozwala zobaczyć badania prowadzone przez SETI w odpowiednim kontekście, mówi współautor badań, Macy Huston.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...