Skocz do zawartości
Forum Kopalni Wiedzy

Rekomendowane odpowiedzi

Astrofizyk Dan Wilkins z Uniwersytetu Stanforda nie był zdziwiony, gdy przyglądając się supermasywnej czarnej dziurze w galaktyce położonej 800 milionów lat świetlnych od Ziemi, zauważył serię jasnych rozbłysków promieniowania rentgenowskiego. Jednak niedługo później czekało go spore zaskoczenie – teleskopy zarejestrowały dodatkowe słabsze rozbłyski o innym „kolorze”. Zgodnie z teorią rozbłyski te pochodzą... spoza czarnej dziury.

Światło, które wpada do czarnej dziury już się z niej nie wydostaje. Nie powinniśmy więc być w stanie zobaczyć niczego, co jest za czarną dziurą, mówi Wilkins. Mogliśmy je zaobserwować dlatego, że czarna dziura zagina przestrzeń, światło i pola magnetyczne wokół siebie, dodaje uczony.

Wilkins jest pierwszym, który bezpośrednio zaobserwował promieniowanie pochodzące spoza czarnej dziury. Zjawisko takie jest przewidziane przez ogólną teorię względności, jednak dopiero teraz udało się je potwierdzić.

Gdy pięćdziesiąt lat temu astrofizycy zaczęli dyskutować o tym, jak może zachowywać się pole magnetyczne w pobliżu czarnej dziury, nie mieli pojęcia,że pewnego dnia można będzie tego użyć do bezpośredniej obserwacji i potwierdzenia teorii Einsteina, mówi profesor Roger Blandford ze SLAC.

Dan Wilkins nie szukał potwierdzenia teorii względności. Chciał dowiedzieć się więcej o koronie czarnej dziury. To obszar, w którym materiał opadający do czarnej dziury zaczyna świecić i tworzy wokół niej koronę. Korony takie to jedne z najjaśniejszych źródeł stałego światła we wszechświecie. Świecą one w zakresie promieniowania rentgenowskiego, a analiza ich światła pozwala na badanie samej czarnej dziury.

Wiodące teorie na temat korony mówią, że powstaje ona z gazu wpadającego do czarnej dziury. Gaz rozgrzewa się do milionów stopni, elektrony oddzielają się od atomów i powstaje namagnetyzowana wirująca plazma. W niej zaś powstają rozbłyski promieniowania rentgenowskiego, które badał Wilkins. Gdy chciał poznać ich źródło i przyjrzał im się bliżej, zauważył serię mniejszych rozbłysków. Naukowcy wykazali, że pochodzą one z oryginalnych dużych rozbłysków, których część odbiła się od tyłu dysku otaczającego czarną dziurę. Są więc pierwszym zarejestrowanym światłem pochodzącym z drugiej – patrząc od Ziemi – strony czarnej dziury.

Wilkins szybko rozpoznał, z czym ma do czynienia, gdyż od kilku lat zajmuje się tworzeniem teorii na temat takich odbić. Ich istnienie wykazała teoria, nad którą pracuję, więc jak tylko je zobaczyłem w teleskopie, zdałem sobie sprawę, że to, co widzę, łączy się z teorią.

Uczony już cieszy się na przyszłe odkrycia. Pracuje on w laboratorium Steve'a Allena z Uniwersytetu Stanforda, gdzie bierze udział w pracach nad wykrywaczem Wide Field Imager, powstającym na potrzeby przyszłego europejskiego obserwatorium Athena (Advanced Telescope for High-ENergy Astrophysics). Będzie ono miało znacznie większe lustro niż jakiekolwiek obserwatorium promieniowania rentgenowskiego, pozwoli nam więc na uzyskanie lepszej rozdzielczości w krótszym czasie. To, co obecnie zaczynamy obserwować stanie się dla nas jeszcze bardziej wyraźne, mówi uczony.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

No proszę ile ta dobra ale stara OTW jeszcze potrafi. 
Szkoda że od OTW stoimy w miejscu jeśli chodzi o teorię grawitacji. Parę odkryć dokonaliśmy - które z praktycznego punktu widzenia są ważne ale teorii nie ruszyły nawet o 1 mm w przód. Wszystkie one potwierdziły OTW. A żeby pójść dalej trzeba OTW zaprzeczyć.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Trzeba jeszcze wiedzieć, w którym miejscu zaprzeczyć;) A tego sami z siebie my, ludzie (w tym naukowcy), przypuszczalnie nie wykombinujemy;) Najpierw musi dojść do odkrycia jakiegoś zjawiska, którego nikt się nie spodziewał lub tp., tak jak to było w przypadku mechaniki kwantowej i teorii względności:)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Supermasywna czarna dziura w centrum Drogi Mlecznej jest bardzo aktywna. Naukowcy z Northwestern University wykorzystali Teleskop Webba do uzyskania najdłuższego i najbardziej szczegółowego obrazu Sagittariusa A*. Dowiedzieli się, że w dysku akrecyjnym wokół dziury bez przerwy mają miejsce rozbłyski. Niektóre z nich to bardzo słabe migotania, trwające sekundy. Inne, potężne i oślepiające, można obserwować codziennie. Są jeszcze inne, niezwykle słabe, które trwają miesiącami.
      Nowe odkrycia pozwolą lepiej zrozumieć naturę czarnych dziur i ich interakcje z otoczeniem, a także dynamikę i ewolucję naszej galaktyki. Spodziewamy się, że do rozbłysków dochodzi w pobliżu wszystkich supermasywnych czarnych dziur. Jednak nasza czarna dziura jest unikatowa. Tam się zawsze coś gotuje, zawsze widać jakąś aktywność, wydaje się, że ona nigdy nie jest spokojna. Obserwowaliśmy ją wielokrotnie w 2023 i 2024 roku i przy każdej obserwacji odnotowywaliśmy zmiany. Za każdym razem widzieliśmy coś innego, to naprawdę imponujące. Nic nigdy nie było takie samo, mówi profesor fizyki i astronomii Farhad Yusef-Zadeh, który specjalizuje się w badaniu centrum Drogi Mlecznej.
      Uczony wraz z zespołem wykorzystali urządzeni NIRCam na JWST, które może jednocześnie prowadzić obserwacje w dwóch zakresach podczerwieni. W sumie zebrali 48 godzin obserwacji, które prowadzili co 8–10 godzin w ciągu roku. To pozwoliło im na odnotowywanie zmian w czasie. Sgr A* okazała się bardziej aktywna, niż naukowcy się spodziewali. W dysku akrecyjnym ciągle dochodziło do rozbłysków o różnej jasności i czasie trwania. W ciągu doby miało miejsce 5–6 dużych rozbłysków, pomiędzy którymi naukowcy obserwowali rozbłyski mniejsze. W danych widzimy wciąż zmieniającą się, gotującą jasność. I nagle, bum! Wielki rozbłysk. A później się uspokaja. Nie zauważyliśmy żadnego wzorca. Wydaje się, że to proces przypadkowy. Profil aktywności czarnej dziury był za każdym razem inny i niezwykle ekscytujący, dodaje uczony.
      Naukowcy nie rozumieją procesów zachodzących w dyskach akrecyjnych czarnych dziur. Profesor Yusef-Zadeh podejrzewa dwa różne mechanizmy. Jeśli dysk przypomina rzekę, to krótkotrwałe słabe rozbłyski są jak niewielki przypadkowe fale, a większe długotrwałe rozbłyski jak fale pływowe powodowane przez bardziej znaczące wydarzenia.
      NIRCam pracuje w zakresach 2,1 i 4,8 mikrometrów. Jednym z najbardziej niespodziewanych odkryć było spostrzeżenie, że zjawiska widoczne w krótszym zakresie fal zmieniały jasność na krótko przed wydarzeniami z dłuższego zakresu fal. Po raz pierwszy obserwujemy taką różnicę w czasie podczas obserwacji w tych długościach fali. Obserwowaliśmy je jednocześnie w NIRCam i zauważyliśmy, że dłuższe fale spóźniały się w stosunku do krótszych od niewielką ilość czasu, od kilku sekund do około 40 sekund, dziwi się Yusef-Zadeh.
      To opóźnienie dostarcza dodatkowych informacji. Może ono wskazywać, że cząstki w miarę trwania rozbłysku tracą energię, a utrata ta ma miejsce szybciej w krótszych zakresach fali. Takie zmiany mogą zachodzić, gdy cząstki poruszają się po spirali wokół linii pola magnetycznego.
      Badacze, chcąc to wyjaśnić, mają nadzieję na przeprowadzenie dłuższych obserwacji. Profesor Yusef-Zadeh już złożył prośbę o zgodę na nieprzerwane wykorzystanie NIRCam przez 24 godziny. Dłuższy czas obserwacji pozwoli na usunięcie z nich zakłóceń i poprawienie rozdzielczości. Gdy obserwuje się tak słabe rozbłyski, trzeba zmagać się z zakłóceniami. Jeśli moglibyśmy prowadzić obserwacje nieprzerwanie przez 24 godziny, moglibyśmy zredukować poziom szumu i zobaczyć szczegóły, których obecnie nie widzimy, wyjaśnia uczony.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przed laty dowiedzieliśmy się, że konstelacja satelitów Starlink emituje tak dużo promieniowania w zakresie fal radiowych, iż może to zakłócać badania w dziedzinie radioastronomii. Nowe obserwacje przeprowadzone za pomocą radioteleskopu LOFAR (Low Frequency Array) – największego na Ziemi radioteleskopu pracującego w zakresie niskich częstotliwości – wykazały, że druga generacja Starlinków w niezamierzony sposób emituje 32-krotnie więcej promieniowania radiowego niż generacja pierwsza. Grozi to oślepieniem radioteleskopów, co może zakłócić jedną z najważniejszych dziedzin nauki zajmujących się badaniem wszechświata.
      W ostatnich latach gwałtownie zwiększyła się liczba satelitów umieszczonych na niskiej orbicie okołoziemskiej. W ciągu ostatnich pięciu lat firmy takie jak SpaceX czy OneWeb wystrzeliły setki i tysiące satelitów, głównie komunikacyjnych. Z ich planów wynika, że do końca dekady liczba satelitów na orbicie przekroczy 100 000. To zaś prowadzi do zwiększenia sztucznej emisji w zakresie fal radiowych, co zagraża badaniom astronomicznym.
      Za pomocą LOFAR rozpoczęliśmy program monitorowanie niezamierzonych emisji z satelitów należących do różnych konstelacji. Nasze obserwacje pokazały, że satelity Starlink drugiej generacji charakteryzuje silniejsza emisja i w szerszym zakresie promieniowania radiowego, niż satelitów pierwszej generacji, mówi Cees Bassa z Holenderskiego Instytutu Radioastronomii (ASTRON).
      To pokazuje, jak ważne są ścisłe regulacje dotyczące niezamierzonej emisji z satelitów, by nie zakłócały one badań radioastronomicznych, które stanowią podstawę dla naszego poznania wszechświata. Ludzkość zbliża się do punktu, w którym będziemy musieli podjąć działania na rzecz zachowania nieba na potrzeby badań wszechświata prowadzonych z Ziemi. Firmy telekomunikacyjne nie mają zamiaru generować tej emisji, więc jej minimalizowanie powinno być priorytetem. Starlink nie jest jedynym wielkim graczem na niskiej orbicie okołoziemskiej, ale może być tą konstelacją, która ustanowi obowiązujące tam standardy, dodaje Cees Bassa.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Europejski radioteleskop LOFAR (LOw Frequency ARray) – którego stacje znajdują się również w Polsce – zanotował najdłuższą parę dżetów wydobywających się z czarnej dziury. Struktura nazwana Porfyrion – od imienia jednego z gigantów z mitologii greckiej – ma długość 23 milionów lat świetlnych. Dotychczas, na podstawie obserwacji i obliczeń sądzono, że maksymalna długość takich dżetów jest znacznie mniejsza.
      Dotychczas sądzono, że limit długości pary dżetów wynosi 4,6–5,0 Mpc (megaparseków). Parsek to 3,26 roku świetlnego, zatem mówimy tutaj o około 16 milionach lat świetlnych. W 2022 roku ten sam zespół naukowy poinformował o istnieniu dżetu wydobywającego się z galaktyki radiowej Alkynoeus. Ma on długość 5 Mpc i był opisywany jako największa struktura pochodzenia galaktycznego. Brak dłuższych par dżetów oraz wyliczenia teoretyczne skłoniły naukowców do wysunięcia hipotezy, że 5 Mpc jest limitem długości.
      Informujemy o zaobserwowaniu struktury radiowej rozciągającej się na około 7 Mpc, czytamy na łamach Nature. Istnienie dżetu dowodzi, że tego typu struktury mogą uniknąć zniszczenia przez niestabilności magnetohydrodynamiczne na przestrzeniach kosmologicznych, nawet jeśli powstały w czasie, gdy wszechświat był znacznie bardziej gęsty, niż obecnie. Nie wiadomo, w jaki sposób tak długotrwała stabilność mogła zostać zachowana.
      Odkrycie sugeruje też, że gigantyczne dżety mogły odgrywać większą niż sądzono rolę w formowaniu się galaktyk we wczesnym wszechświecie. Astronomowie uważają, że galaktyki i ich czarne dziury wspólnie przechodzą ewolucję, a jednym z kluczowych elementów dżetów jest emitowanie olbrzymich ilości energii, które wpływają na ich galaktyki macierzyste i galaktyki z nimi sąsiadujące. Nasze odkrycie pokazuje, że oddziaływanie takich dżetów rozciąga się na większe odległości, niż sądziliśmy, mówi współautor badań, profesor George Djorgovski z Kalifornijskiego Uniwersytetu Technologicznego.
      Autorzy nowych badań wykorzystali LOFAR do poszukiwania olbrzymich dżetów. Dżety to powszechne zjawisko, jednak zwykle są stosunkowo niewielkie. Wcześniej znano setki naprawdę dużych struktur tego typu i uważano, że rzadko one występują. Teraz badacze zarejestrowali ich ponad 10 000. Wielkie dżety były znane wcześniej, ale nie wiedzieliśmy, że jest ich tak dużo, dodaje profesor Martin Hardcastle z University of Hertfordshire.
      Poszukiwania olbrzymich dżetów rozpoczęły się od dość przypadkowego spostrzeżenia. W 2018 roku główny autor obecnych badań, Martijn S. S. L. Oei, wraz z zespołem wykorzystał LOFAR do obserwowania włókien rozciągających się pomiędzy galaktykami. Na obrazach naukowcy dostrzegli zaskakująco dużo wielkich dżetów. Nie mieliśmy pojęcia, że jest ich aż tyle, mówi Oei.
      Naukowcy zaczęli więc szukać kolejnych wielkich dżetów i trafili na Porfyriona. Poza LOFAR-em wykorzystali kilka innych teleskopów, dzięki którym określili, skąd pochodzi i jak daleko od nas się znajduje. Zauważyli nie tylko, że struktura ta pochodzi ze znacznie wcześniejszych okresów istnienia wszechświata, niż inne. Stwierdzili, że gigant znajduje się w regionie wszechświata, w którym istnieje wiele czarnych dziur tego samego typu, z którego on pochodzi. To aż może wskazywać, że przez astronomami jeszcze wiele podobnych odkryć. Możemy obserwować wierzchołek góry lodowej, mówi Oei.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W jednym z laboratoriów na Imperial College London odtworzono wirujący dysk plazmy, z tych, jakie otaczają czarne dziury i tworzące się gwiazdy. Eksperyment pozwala lepiej modelować procesy, zachodzące w takich dyskach, a naukowcy mają nadzieję, że dzięki temu dowiedzą się, jak rosną czarne dziury i powstają gwiazdy.
      Gdy materia zbliża się do czarnej dziury, jest rozgrzewana i staje się plazmą, czwartym stanem materii składającym się z naładowanych jonów i wolnych elektronów. Zaczyna też się obracać, tworząc dysk akrecyjny. W wyniku obrotu powstają siły odśrodkowe odrzucające plazmę na zewnątrz, jednak siły te równoważy grawitacja czarnej dziury.
      Naukowcy chcą poznać odpowiedź na pytanie, w jaki sposób czarna dziura rośnie, skoro materia – w formie plazmy – pozostaje na jej orbicie. Najbardziej rozpowszechniona teoria mówi, że niestabilności w polu magnetycznym plazmy prowadzą do pojawienia się tarcia, plazma traci energię i wpada do czarnej dziury.
      Dotychczas mechanizm ten badano za pomocą ciekłych wirujących metali. Za ich pomocą sprawdzano, co dzieje się, gdy pojawi się pole magnetyczne. Jednak metale te zamknięte są w rurach, co nie oddaje w pełni swobodnie poruszającej się plazmy.
      Doktor Vincente Valenzuela-Villaseca i jego zespół wykorzystali urządzenie Mega Ampere Generator for Plasma Implosion Experiments (MAGPIE) do stworzenia wirującego dysku plazmy. Za jego pomocą przyspieszyli osiem strumieni plazmy i doprowadzili do ich zderzenia, w wyniku czego powstała obracająca się kolumna plazmy. Odkryli, że im bliżej środka, tym plazma porusza się szybciej. To ważna cecha dysków akrecyjnych.
      MAGPIE generuje krótkie impulsy plazmy, przez co w utworzonym dysku dochodziło tylko do jednego obrotu. Jednak liczbę obrotów będzie można zwiększyć wydłużając czas trwania impulsów plazmy. Przy dłużej istniejących dyskach możliwe będzie też zastosowanie pól magnetycznych i zbadanie ich wpływu na plazmę. Zaczynamy badać dyski akrecyjne w nowy sposób, zarówno za pomocą Teleskopu Horyzontu Zdarzeń, jak i naszego eksperymentu. Pozwoli nam to przetestować różne teorie i sprawdzić, czy zgadzają się one z obserwacjami, mówi Valenzuela-Villaseca.
      Ze szczegółami badań można zapoznać się na łamach Physical Review Letters.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Ekosfera jest tradycyjnie definiowana, jako odległość pomiędzy gwiazdą, a planetą, która umożliwia istnienie wody w stanie ciekłym na planecie. To obszar wokół gwiazdy, w którym na znajdujących się tam planetach może istnieć życie. Jednak grupa naukowców z University of Georgia uważa, że znacznie lepsze byłoby określenie „ekosfery fotosyntezy”, czyli wzięcie pod uwagi nie tylko możliwości istnienia ciekłej wody, ale również światła, jakie do planety dociera z gwiazdy macierzystej.
      O życiu na innych planetach nie wiemy nic pewnego. Jednak poglądy na ten temat możemy przypisać do jednej z dwóch szkół. Pierwsza z nich mówi, że na innych planetach ewolucja mogła znaleźć sposób, by poradzić sobie z pozornie nieprzekraczalnymi barierami dla życia, jakie znamy z Ziemi. Zgodnie zaś z drugą, życie w całym wszechświecie ograniczone jest uniwersalnymi prawami fizyki i może istnieć jedynie w formie podobnej do życia na Ziemi.
      Naukowcy z Georgii rozpoczęli swoje badania od przyznania racji drugiej ze szkół i wprowadzili pojęcie „ekosfery fotosyntezy”. Znajdujące się w tym obszarze planety nie tylko mogą utrzymać na powierzchni ciekłą wodę – zatem nie znajdują się ani zbyt blisko, ani zbyt daleko od gwiazdy – ale również otrzymują wystarczająca ilość promieniowania w zakresie od 400 do 700 nanometrów. Promieniowanie o takich długościach fali jest na Ziemi niezbędne, by zachodziła fotosynteza, umożliwiające istnienie roślin.
      Obecność fotosyntezy jest niezbędne do poszukiwania życia we wszechświecie. Jeśli mamy rozpoznać biosygnatury życia na innych planetach, to będą to sygnatury atmosfery bogatej w tlen, gdyż trudno jest wyjaśnić istnienie takiej atmosfery bez obecności organizmów żywych na planecie, mówi główna autorka badań, Cassandra Hall. Pojęcie „ekosfery fotosyntezy” jest zatem bardziej praktyczne i dające szanse na znalezienie życia, niż sama ekosfera.
      Nie możemy oczywiście wykluczyć, że organizmy żywe na innych planetach przeprowadzają fotosyntezę w innych zakresach długości fali światła, jednak istnieje pewien silny przekonujący argument, że zakres 400–700 nm jest uniwersalny. Otóż jest to ten zakres fal światła, dla którego woda jest wysoce przezroczysta. Poza tym zakresem absorpcja światła przez wodę gwałtownie się zwiększa i oceany stają się dla takiego światła nieprzezroczyste. To silny argument za tym, że oceaniczne organizmy w całym wszechświecie potrzebują światła w tym właśnie zakresie, by móc prowadzić fotosyntezę.
      Uczeni zauważyli również, że życie oparte na fotosyntezie może z mniejszym prawdopodobieństwem powstać na planetach znacznie większych niż Ziemia. Planety takie mają bowiem zwykle bardziej gęstą atmosferę, która będzie blokowała znaczną część światła z potrzebnego zakresu. Dlatego też Hall i jej koledzy uważają, że życia raczej należy szukać na mniejszych, bardziej podobnych do Ziemi planetach, niż na super-Ziemiach, które są uważane za dobry cel takich poszukiwań.
      Badania takie, jak przeprowadzone przez naukowców z University of Georgia są niezwykle istotne, gdyż naukowcy mają ograniczony dostęp do odpowiednich narzędzi badawczych. Szczegółowe plany wykorzystania najlepszych teleskopów rozpisane są na wiele miesięcy czy lat naprzód, a poszczególnym grupom naukowym przydziela się ograniczoną ilość czasu. Dlatego też warto, by – jeśli ich badania polegają na poszukiwaniu życia – skupiali się na badaniach najbardziej obiecujących obiektów. Tym bardziej, że w najbliższych latach ludzkość zyska nowe narzędzia. Od 2017 roku w Chile budowany jest europejski Extremely Large Telescope (ELT), który będzie znacznie bardziej efektywnie niż Teleskop Webba poszukiwał tlenu w atmosferach egzoplanet. Z kolei NASA rozważa budowę teleskopu Habitable Exoplanet Observatory, który byłby wyspecjalizowany w poszukiwaniu biosygnatur na egzoplanetach wielkości Ziemi. Teleskop ten w 2035 roku miałby trafić do punktu L2, gdzie obecnie znajduje się Teleskop Webba.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...