Pokonali limit dyfrakcyjny. I to 38-krotnie
dodany przez
KopalniaWiedzy.pl, w Technologia
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Obrazki, które widzicie, niosą ze sobą nadzieję na uratowanie życia milionów ludzi. Opublikowali je naukowcy z University College London i Imperial College London, którzy na łamach Nature Microbiology poinformowali o pierwszym w historii udanym zobrazowaniu procesu przebijania błony zewnętrznej bakterii Gram-ujemnych przez antybiotyki z grupy polimyksyn.
Już obecnie z powodu antybiotykooporności każdego roku umiera ponad milion osób na całym świecie. Oznacza to, ni mniej ni więcej, że osoby te zostały zabite przez bakterie, na które leki istnieją i które jeszcze jakiś czas temu by ich nie zabiły. Jednak z powodu nadmiernego nieracjonalnego używania antybiotyków – zarówno niepotrzebnego wykorzystywania ich w medycynie, jak i w hodowli zwierząt – bakterie nabywają oporności, przestają być wrażliwe na działanie antybiotyków. Osoba, która miała pecha zarazić się takim antybiotykoopornym szczepem może przechodzić chorobę niezwykle ciężko, a nawet umrzeć, pomimo istnienia antybiotyków zwalczających ten akurat gatunek czy rodzaj bakterii. Rosnąca antybiotykooporność jest uznawana za jedno z najpoważniejszych zagrożeń zdrowotnych dla ludzkości.
Polimyksyny po raz pierwszy wyizolowano 80 lat temu i – ze względu na ich neuro- i nefrotoksyczność - są używane jako ostatnia deska ratunku w ciężkich infekcjach bakteriami Gram-ujemnymi. Bakterie te dysponują dodatkową warstwą ochronną, unikalną błoną zewnętrzną, chroniącą mikroorganizm przed zewnętrznymi zagrożeniami. Wiadomo było, że polimyksyny biorą na cel tę warstwę zewnętrzną, jednak naukowcy nie rozumieli, jak ją niszczą i zabijają bakterie.
Brytyjscy naukowcy jako pierwsi ujrzeli, jak polimyksyna B w ciągu zaledwie kilku minut powoduje pojawianie się wgłębień i bąbli na powierzchni błony zewnętrznej, co powoduje, że bakteria gwałtownie ją odrzuca. Naukowcy stwierdzili, że antybiotyk wymuszał na bakterii odrzucenie „zbroi”, bakteria wytwarzała nową, sytuacja się powtarzała, a im szybciej E.coli starała się wytworzyć nową błonę zewnętrzną, tym więcej było w niej luk, przez które antybiotyk mógł wniknąć i zabić bakterię.
Co jednak ważne, proces ten działał tylko wówczas, gdy bakteria była aktywna. W stanie uśpionym wytwarzanie nowej błony jest wyłączone, więc antybiotyk nie działa. To niezwykle ważna informacja, gdyż dotychczas sądzono, ze polimyksyny radzą sobie z bakterią w każdym stanie. Tymczasem okazuje się, że aby efektywnie działać, potrzebują współpracy samej bakterii.
Teraz naukowcy spróbują niestandardowego podejścia. Spróbują połączyć podawanie polimyksyn z podawaniem środka, którego celem będzie wspomożenie wytwarzania błony zewnętrznej i/lub wybudzenie bakterii ze stanu uśpienia.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Obrazki, które widzicie, niosą ze sobą nadzieję na uratowanie życia milionów ludzi. Opublikowali je naukowcy z University College London i Imperial College London, którzy na łamach Nature Microbiology poinformowali o pierwszym w historii udanym zobrazowaniu procesu przebijania błony zewnętrznej bakterii Gram-ujemnych przez antybiotyki z grupy polimyksyn.
Już obecnie z powodu antybiotykooporności każdego roku umiera ponad milion osób na całym świecie. Oznacza to, ni mniej ni więcej, że osoby te zostały zabite przez bakterie, na które leki istnieją i które jeszcze jakiś czas temu by ich nie zabiły. Jednak z powodu nadmiernego nieracjonalnego używania antybiotyków – zarówno niepotrzebnego wykorzystywania ich w medycynie, jak i w hodowli zwierząt – bakterie nabywają oporności, przestają być wrażliwe na działanie antybiotyków. Osoba, która miała pecha zarazić się takim antybiotykoopornym szczepem może przechodzić chorobę niezwykle ciężko, a nawet umrzeć, pomimo istnienia antybiotyków zwalczających ten akurat gatunek czy rodzaj bakterii. Rosnąca antybiotykooporność jest uznawana za jedno z najpoważniejszych zagrożeń zdrowotnych dla ludzkości.
Polimyksyny po raz pierwszy wyizolowano 80 lat temu i – ze względu na ich neuro- i nefrotoksyczność - są używane jako ostatnia deska ratunku w ciężkich infekcjach bakteriami Gram-ujemnymi. Bakterie te dysponują dodatkową warstwą ochronną, unikalną błoną zewnętrzną, chroniącą mikroorganizm przed zewnętrznymi zagrożeniami. Wiadomo było, że polimyksyny biorą na cel tę warstwę zewnętrzną, jednak naukowcy nie rozumieli, jak ją niszczą i zabijają bakterie.
Brytyjscy naukowcy jako pierwsi ujrzeli, jak polimyksyna B w ciągu zaledwie kilku minut powoduje pojawianie się wgłębień i bąbli na powierzchni błony zewnętrznej, co powoduje, że bakteria gwałtownie ją odrzuca. Naukowcy stwierdzili, że antybiotyk wymuszał na bakterii odrzucenie „zbroi”, bakteria wytwarzała nową, sytuacja się powtarzała, a im szybciej E.coli starała się wytworzyć nową błonę zewnętrzną, tym więcej było w niej luk, przez które antybiotyk mógł wniknąć i zabić bakterię.
Co jednak ważne, proces ten działał tylko wówczas, gdy bakteria była aktywna. W stanie uśpionym wytwarzanie nowej błony jest wyłączone, więc antybiotyk nie działa. To niezwykle ważna informacja, gdyż dotychczas sądzono, ze polimyksyny radzą sobie z bakterią w każdym stanie. Tymczasem okazuje się, że aby efektywnie działać, potrzebują współpracy samej bakterii.
Teraz naukowcy spróbują niestandardowego podejścia. Spróbują połączyć podawanie polimyksyn z podawaniem środka, którego celem będzie wspomożenie wytwarzania błony zewnętrznej i/lub wybudzenie bakterii ze stanu uśpienia.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Uczeni z Instytutu Nauk Multidyscyplinarnych im. Maxa Plancka – Melina Schuh, Christopher Thomas i Tabea Lilian Marx – są pierwszymi, którzy zobrazowali cały proces owulacji w czasie rzeczywistym. Obrazowanie, wykonane u myszy, pozwala na badanie jajeczkowania w wysokiej rozdzielczości przestrzennej oraz czasowej i przyczyni się do poszerzenia wiedzy w dziedzinie badań nad płodnością.
Większość kobiet przechodzi owulację około 400 razy w życiu. W czasie fazy płodnej dojrzewanie rozpoczyna 15–30 jajeczek. Jednak tylko największe i najlepiej rozwinięte z nich biorą udział w owulacji, gdy są uwalniane do jajowodów.
Owulacja regulowana jest przez złożone interakcje hormonów, a sam ten proces słabo rozumiemy. Jajniki znajdują się głęboko w organizmie kobiety, trudno uzyskać do nich dostęp badawczy. Ponadto owulacja zachodzi w wąskim okienku czasowym, nie sposób przewidzieć, kiedy jajniki uwolnią kolejne jajeczko. Nic więc dziwnego, że dopiero teraz udało się po raz pierwszy zobrazować ten proces.
Możemy wyróżnić w nim trzy fazy. Pęcherzyk Graffa rozszerza się, kurczy i w końcu uwalnia jajeczko, mówi Melina Schuh, dyrektor Wydziału Mejozy w Instytucie Maxa Plancka. Faza pierwsza, rozszerzanie pęcherzyka, jest napędzana przez uwolnienie kwasu hialuronowego. Naukowcy śledzili pod mikroskopem jak w fazie tej zmienia się rozmiar i kształt pęcherzyka. W czasie owulacji do pęcherzyka napływa płyn, co powoduje jego znaczący wzrost, dodaje Christopher Thomas, współautor badań. Kwas hialuronowy jest niezbędny dla owulacji. Gdy naukowcy zablokowali jego wytwarzanie, pęcherzyk rozszerzał się w mniejszym stopniu i do owulacji nie doszło.
Podczas drugiej fazy, kurczenia się pęcherzyka, komórki mięśni gładkich zewnętrznej warstwy pęcherzyka powodują jego kurczenie się. Gdy naukowcy zablokowali komórkom możliwość kurczenia się, pęcherzyk nie zmniejszył swojej objętości i do owulacji nie doszło. Gdy pęcherzyk pęka, co ma miejsce w trzeciej fazie, jajeczko zostaje uwolnione. Najpierw pęcherzyk wybrzusza się na zewnątrz, następnie pęka, uwalniając płyn pęcherzykowy, komórki ziarniste i, na końcu, jajeczko, mówi Marx.
Po owulacji pęcherzyk przekształca się w ciałko żółte, które wytwarza progesteron przygotowujący macicę do implantacji embrionu. Jeśli jajeczko nie zostanie zapłodnione lub zapłodnione nie zagnieździ się w macicy, ciałko żółte zanika w ciągu 14 dni i rozpoczyna się kolejny cykl.
Nasze badania wykazały, że owulacja to solidny proces. Co prawda do jej rozpoczęcia potrzebny jest sygnał z zewnątrz, jednak cała reszta przebiega już niezależnie od pozostałej części jajnika, gdyż wszystkie niezbędne zasoby i informacje są zawarte w samym pęcherzyku. Dzięki naszej metodzie obrazowania my i inne zespoły naukowe będziemy mogli w przyszłości jeszcze dokładniej zbadać ten mechanizm i zyskać nową wiedzę, która przyda się w badaniach nad płodnością u ludzi, cieszy się Schuh.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Na australijskim University of Queensland powstał pierwszy mikroskop wykorzystujący efekt splątania kwantowego, który przewyższa obecnie dostępne mikroskopy. Pozwala on dostrzec niewidoczne dotychczas struktury biologiczne. Mikroskop będzie niezwykle przydatny w biotechnologii, a wykorzystane przezeń techniki mogą znaleźć szereg zastosowań od nawigacji po obrazowanie medyczne.
Ten przełom pozwoli na rozwój wielu nowych technologii, od doskonalszych systemów nawigacyjnych po lepsze maszyny do rezonansu magnetycznego, mówi profesor Warwick Bowen z Quantum Optics Lab i ARC Centre of Excellence for Engineered Quantum Systems.
W końcu pokazaliśmy czujnik, który przewyższa istniejące technologie niekwantowe. To niezwykle ekscytujące. Mamy tutaj pierwszy dowód na to, że wykorzystanie splątania kwantowego w obrazowaniu może prowadzić do całkowitej zmiany paradygmatu, stwierdza Bowen.
W opracowanej przez australijską armię Quantum Technology Roadmap, czujniki kwantowe mają dokonać rewolucji w dziedzinie opieki zdrowotnej, inżynierii, transporcie czy wykorzystaniu surowców.
Największym osiągnięciem australijskich naukowców jest przekroczenie niepokonanej dotychczas bariery, z którą zmagała się mikroskopia optyczna. Najlepsze mikroskopy optyczne wykorzystują lasery, których światło jest miliardy razy jaśniejsze niż światło słoneczne. Delikatne systemy biologiczne, jak ludzkie komórki, mogą przetrwać w takich warunkach jedynie przez krótki czas. To poważny problem. Tymczasem dzięki kwantowemu splątaniu uzyskaliśmy w naszym mikroskopie 35-procentową poprawę jakości obrazu bez jednoczesnego niszczenia komórek. To pozwoliło nam na zobrazowanie miniaturowych struktur, które normalnie pozostałyby niewidoczne, wyjaśnia Bowen.
Badania Australijczyków zostały opisane na łamach Nature. Były one finansowane przez Biuro Badań Naukowcy US Air Force oraz Australian Resarch Council.
« powrót do artykułu -
przez KopalniaWiedzy.pl
W 2018 roku naukowcy z Cornell University zbudowali wysoko wydajny wykrywacz, połączyli go z ptychografią, specjalną metodą obrazowania mikroskopowego i ustanowili światowy rekord obrazowania, uzyskując trzykrotnie większą rozdzielczość obrazu niż najlepsze mikroskopy elektronowe. Teraz ten sam zespół pobił swój własny rekord, dwukrotnie poprawiając rozdzielczość obrazu.
Uzyskano niezwykle wyraźny obraz, a jedyne rozmazane elementy pochodzą od zmian termicznych samych atomów. To nie jest po prostu nowy rekord. Wkroczyliśmy w obszar ostatecznych limitów rozdzielczości. Możemy teraz w bardzo prosty sposób wskazać, gdzie znajdują się atomy. To zaś otwiera całkiem nowe możliwości pomiaru, o których marzyliśmy od dawna. Rozwiązaliśmy też poważny problem, który Hans Bethe zauważył w 1928 roku, poradziliśmy sobie z rozpraszaniem promienia w próbce, mówi Muller.
Dzięki nowym algorytmom jesteśmy teraz w stanie skorygować wszelkie rozmazane kształty do tego stopnia, że największy rozmazany obszar, jaki otrzymujemy wynika z faktu, że same atomy się poruszają, dodaje uczony. Niewykluczone, że obraz można jeszcze poprawić, używając cięższych atomów, które mniej się poruszają, lub też schładzając próbkę. Jednak nawet w temperaturze zera absolutnego w atomach wciąż będzie dochodziło do fluktuacji kwantowych, zatem poprawa nie będzie szczególnie duża w porównaniu z już uzyskanym obrazem.
Najnowsze osiągnięcie naukowców z Cornell University oznacza, że specjaliści będą mogli zlokalizować indywidualne atomy w przestrzeni trójwymiarowej, co nie było możliwe za pomocą dotychczasowych metod. Możliwe będzie tez znalezienie zanieczyszczeń atomowych w różnych materiałach, co przełoży się na stworzenie doskonalszych półprzewodników, katalizatorów czy materiałów wykorzystywanych do budowy komputerów kwantowych. Możliwe będzie też analizowanie atomów na styku dwóch różnych połączonych materiałów.
Bardzo ważnym elementem pracy jest fakt, że nową metodę można też wykorzystać do analizowania próbek biologicznych, a nawet połączeń pomiędzy synapsami w mózgu.
Zastosowana metoda jest czasochłonna i wymaga dostępu do dużych mocy obliczeniowych, jednak w przyszłości dzięki potężniejszym komputerom, metodom maszynowego uczenia i szybszym czujnikom stanie się tańsza i łatwiej dostępna.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.
