Konserwatyści chcą chronić ośmiornice i homary przed bólem i cierpieniem
dodany przez
KopalniaWiedzy.pl, w Humanistyka
-
Podobna zawartość
-
przez KopalniaWiedzy.pl
Spożycie alkoholu wśród zwierząt jest bardziej rozpowszechnione, niż sądzimy – uważają naukowcy w University of Exeter, University of Calgary i College of Central Florida. Przypominają oni, że etanol jest obecny niemal w każdym ekosystemie, należy więc przyjąć, że prawdopodobnie jest regularnie spożywany przez większość zwierząt odżywiających się owocami i nektarem. Swoje wnioski uczeni opublikowali na łamach pisma Trends in Ecology & Evolution.
Niejednokrotnie słyszeliśmy doniesienia o zwierzętach, które upiły się sfermentowanymi owocami. Jednak poza tymi anegdotycznymi informacjami, nauka stoi na stanowisku, że zwierzęta – z wyjątkiem człowieka – rzadko spożywają alkohol. Autorzy wspomnianej pracy uważają, że pogląd ten wymaga rewizji. Musimy porzucić antropocentryczny punkt wiedzenia, zgodnie z którym etanolu używają ludzie. Substancja ta jest znacznie bardziej rozpowszechniona w środowisku, niż sądziliśmy, i większość zwierząt jedzących owoce jest wystawionych na działanie alkoholu, mówi doktor Kimberley Hockings z University of Exeter.
Etanol powszechnie pojawił się na Ziemi około 100 milionów lat temu, gdy rośliny kwitnące zaczęły wytwarzać nektar i owoce zawierające cukier, które mogły zostać poddane fermentacji przez drożdże. Obecnie etanol jest z sposób naturalny obecny w niemal każdym ekosystemie, a jego stężenie jest wyższe na niższych szerokościach geograficznych i w wilgotnych tropikach. Tam też pojawia się on przez cały rok.
W większości przypadków w wyniku naturalnej fermentacji w owocach stężenie alkoholu sięga 2%. Jednak na przykład w przejrzałych owocach palm w Panamie zanotowano stężenie sięgające 10,3%.
Geny pozwalające na rozkładanie etanolu są starsze niż sam etanol. Mamy też dowody, że u ptaków i ssaków doszło do udoskonalenia możliwości trawienia etanolu już po jego pojawieniu się. Najbardziej efektywnie etanol jest metabolizowany przez naczelne i wiewióreczniki. Dlaczego właśnie u nich? Wyjaśnienie jest proste. Z ekologicznego punktu widzenia nie jest zbyt korzystnym chodzenie po drzewach w stanie upojenia alkoholowego. To przepis, by nie przekazać dalej genów, mówi Matthew Carrigan z College of Central Florida.
Uczony dodaje, że w przypadku zwierząt mamy do czynienia z odmiennym mechanizmem niż u ludzi. Ludzie chcą się upić, a nie chcą przy tym dodatkowych kalorii. Zwierzęta poszukują kalorii, ale nie chcą się upijać. Nie jest jasne, czy zwierzęta spożywają etanol dla samego etanolu. Tutaj potrzeba dalszych badań, na przykład nad wpływem etanolu na fizjologię i ewolucję zwierząt.
Jednak, jak zauważają naukowcy, spożycie etanolu może przynosić dzikim zwierzętom korzyści. Przede wszystkim zawiera on sporo kalorii, a jego silny zapach prowadzi zwierzęta do źródła pożywienia. Chociaż, jak uważają naukowcy, jest mało prawdopodobne, by zwierzęta wyczuwały sam etanol.
Etanol może przynosić też korzyści zdrowotne. Muszki owocówki celowo składają jajka tam, gdzie jest etanol, gdyż chroni on je przed pasożytami. Zauważono też, że larwy owocówek zwiększają spożycie etanolu jeśli zostaną zarażone pasożytem.
Kwestią otwartą pozostaje pytanie, czy po spożyciu etanolu zwierzęta również czują się przyjemnie, są odprężone, chętniej nawiązują kontakty społeczne. By to zbadać musimy sprawdzić, jaka jest fizjologiczna reakcja zwierząt na etanol, mówi Anna Bowland z Exeter.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Czasowe sojusze między ośmiornicami i rybami rafowymi są dokumentowane od dziesięcioleci. Mogą one obejmować licznych uczestników z rożnych gatunków. Ośmiornice i ryby są znane ze zbiorowych polowań, podczas których czerpią korzyści z morfologii i strategii polowań drugiej strony - podkreśla Eduardo Sampaio, Uniwersytetu w Lizbonie oraz Instytutu Zachowania Zwierząt Maxa Plancka. Ponieważ dochodzi do połączenia sił licznych partnerów, tworzy się złożona sieć. Jak się okazuje, jest ona znacznie bardziej skomplikowana niż się wydawało.
Swoje ostatnie badania Eduardo i jego zespół prowadzili na Morzu Czerwonym i Wielkiej Rafie Koralowej, obserwując współpracę ryb i ośmiornic z gatunku Octopus cyanea. Dzięki zastosowaniu dwóch kamer i analizie ponad 100 godzin nagranych materiałów mogli stworzyć sceny 3D i dokładnie przeanalizować interakcje pomiędzy członkami grupy.
Obserwacje nie były łatwe, gdyż ośmiornice natychmiast się chowały, gdy zobaczyły nurków. Ludzie zmienili więc strategię i obserwowali ryby. Znając zachowanie poszczególnych gatunków, można zauważyć, gdy odbiega ono od normy. Szybko zdawaliśmy sobie sprawę, że coś się dzieje, gdy ryby różnych gatunków przebywały razem i patrzyły w tym samym kierunku. To zwykle oznaczało, że w pobliżu jest ośmiornica, mówi Sampaio.
Podczas analizowania nagrań naukowcy zauważyli, że różni członkowie grupy odpowiadają za podejmowanie różnych decyzji. Zwykle decyzję o tym, gdzie uda się cała grupa, podejmowały ryby z rodziny barwenowatych. To one głównie zajmowały się badaniem otoczenia. Z kolei decyzję o tym, czy i kiedy grupa podąży za potencjalną ofiarą, należała najczęściej do ośmiornic. To logiczny podział zadań. Ryby mogą szybko przeszukać spory teren, ośmiornica zaś może wykorzystać swoją budowę ciała, by dostać się do ofiary.
Jednak współpraca nie przebiega bezkonfliktowo. Już przed kilku laty opisywaliśmy badania, w czasie których Eduardo Sampaio odkrył, że ośmiornice biją niektóre ryby. Uderzanie ma na celu zmianę pozycji konkretnej ryby w grupie, wyeliminowanie jej z polowania lub odpędzenie od ofiary.
Dzięki takiej współpracy ryby zyskują pokarm, do którego w inny sposób nie miałyby dostępu, ośmiornice zaś oszczędzają energię podczas polowania, gdyż ryby prowadzą je wprost do ofiary.
Z przeprowadzonych badań wynika, że grupa jest głównie kontrolowana przez ośmiornice – chociaż ryby również wpływają na to, która z nich jaką pozycję zajmuje –, a ryby działają jak „czujniki” wykrywające i namierzające ofiarę. Pozycja członków grupy jest dynamiczna, a na ich zachowanie, wydatkowanie energii i odniesione korzyści wpływa skład grupy. Uzyskane wyniki poszerzają naszą wiedzę o procesach przywództwa i socjalizowania się oraz pokazują, jak złożone i elastyczne są zachowania społeczne w naturze, mówi Sampaio.
« powrót do artykułu -
przez KopalniaWiedzy.pl
O niesporczakach, albatrosach, gepardach i innych rekordzistach świata zwierząt słyszeliśmy niejednokrotnie. Jednak świat pełen jest niezwykłych stworzeń, o których mało kto słyszał. Dlatego nasze zestawienie niezwykłych osiągnięć przygotowaliśmy nieco inaczej. Uwzględniliśmy w nim te mniej znane, może nie tak spektakularne, ale na pewno warte poznania zwierzęta.
Złote włosy i łuski
Jednym z takich niezwykłych, a przy tym niemal zupełnie nieznanych zwierząt jest Chrysomallon squamiferum. Już jego wygląd wskazuje, że nie mamy do czynienia ze ślimakiem jak każdy inny. Jego nazwa gatunkowa, przełożona na polski, brzmi "Złotowłosy noszący łuski". Niezwykły, przepiękny mięczak został po raz pierwszy zauważony w 2001 roku na głębokości ponad 2000 metrów w pobliżu studni hydrotermalnych. Nieformalnie nazywano go „łuskostopym”. I nic dziwnego, bo setki czarnych metalicznych sklerytów pokrywają stopę tego ślimaka. Miękki rdzeń rdzeń sklerytów pokryty jest konchioliną, biopolimerem stanowiącym warstwę ochronną mięczaków. Konchiolina była z kolei pokryta siarczkami żelaza: pirytem i greigitem. Nadawały one zwierzęciu wspaniały złoty kolor. Więc dwa lata po odkryciu pojawiła się propozycja nazwy gatunkowej: Chrysomallon squamiferum.
Niedługo potem na jaw wyszła kolejna tajemnica ślimaka. Naukowcy zauważyli, że jego muszla również pokryta jest siarczkami żelaza, co czyni go jedynym znanym zwierzęciem, które wbudowało żelazo w swój szkielet.
Minęły kolejne lata, zanim w 2015 roku Chong Chen – wówczas pracujący na University of Oxford – i jego zespół opisali gatunek zgodnie z wszelkimi wymogami, co umożliwiło jego sklasyfikowanie i nadanie mu nazwy. „Złotowłosy” stał się pierwszym przedstawicielem nowego rodzaju, Chrysomallon, do którego należy jako jedyny gatunek. W międzyczasie zaś okazało się, że „Złotowłosy” wcale nie musi być złoty. Przy jednym z kominów hydrotermalnych odkryto białą odmianę, której brak warstwy siarczku żelaza.
Chrysomallon występuje wyłącznie przy kominach hydrotermalnych Oceanu Indyjskiego, na głębokościach 2400–2900 metrów. Ten zagrożony gatunek jest niezwykły nawet jak na standardy spokrewnionych z nim ślimaków żyjących na dużych głębokościach.
Jego przełyk zamieszkują gammaproteobakterie prawdopodobnie zapewniające mu składniki odżywcze. Chrysomallon squamiferum może też pochwalić się wyjątkowo dużym sercem. Stanowi ono aż 4% objętości ciała. W stosunku do wielkości organizmu jest ono więc 3-krotnie większe niż serce człowieka.
Przed pająkami nie ma ucieczki
Wiosna i lato to ulubione pory roku niezliczonej rzeszy ludzi. A byłyby jeszcze bardziej ulubione, gdyby nie różne niewielkie żyjątka. I tym razem nie chodzi nam o wroga numer 1, czyli komara. Mowa o pająkach. Dla wielu ludzi są to najbardziej przerażające ze zwierząt zamieszkujących Ziemię. A w ciepłych miesiącach jest ich zdecydowanie zbyt dużo. Dlatego też ci, którzy boją się pająków, często z ulgą witają nadejście zimy. Jednak chłody od pająków nie chronią. Najzimniejszym miejscem zamieszkałym przez pająki jest bowiem wieś Ojmiakon w Jakucji. Najniższa zanotowana tam temperatura wyniosła -71,2 stopnia Celsjusza. A mimo to we wsi i jej okolicach zarejestrowano... 55 gatunków, należących do 11 rodzin. Głównie są to przedstawiciele rodzin Gnaphosidae, Lycosidae i Linyphiidae.
Przed pająkami nie chronią też upały. Mieszkają one również w Dolinie Śmierci w Kalifornii, gdzie zanotowano najwyższą temperaturę na powierzchni Ziemi (56,7 stopnia Celsjusza). Niektóre z gatunków wydają się celowo wybierać szczególnie gorące miejsca, gdzie znajduje się dużo soli. Pająki znaleziono też na Mount Everest na wysokości 6700 metrów, na Grenlandii i Svalbardzie.
Jedyny miejscem, w których mogą schronić się osoby cierpiące na arachnofobię jest Antarktyka. Znajdowano tam co prawda pająki, ale były to martwe osobniki zawleczone przez ludzi. Pająków nie ma też w morzach i oceanach. Nie wyewoluowały zdolności do ciągłego przebywania w słonej wodzie. Istnieją co prawda zwierzęta nazywane potocznie „pająkami morskimi”, ale w rzeczywistości nie są to pająki, a daleko z nimi spokrewnione kikutnice.
Są jednak pająki, żyjące w wodzie słodkiej. To gatunek Argyroneta aquatica. Potrafi oddychać pod wodą, zatem w niej poluje, pożywia się, linieje, składa jaja i kopuluje.
Wzór dla nanosatelitów
Alvinella pompejana to kolejny niezwykły mieszkaniec morskich głębin. Żyje przy kominach hydrotermalnych i trzeba mu przyznać, że lubi ciepełko. To najbardziej odporny na wysokie temperatury organizm na Ziemi. Tak, wiemy o niesporczakach. Jednak ich zdolność do przetrwania skrajnie wysokich temperatur związana jest z wejściem w stan anabiozy. Tymczasem kilkunastocentymetrowa Alvinella pompejana buduje rurkowate norki, w których mieszka, u wylotów kominów hydrotermalnych na Pacyfiku i prowadzi tam normalne życie. W miejscu, w którym takie mieszkanie jest przyczepione do podłoża, temperatury dochodzą do 105 stopni Celsjusza, a w samej rurce nie jest dużo chłodniej. Temperatury zmierzone u wylotu rurki wynoszą od 20 do 45 stopni Celsjusza. Znacznie trudniej jest zmierzyć je wewnątrz, gdyż zwierzęta żyją na głębokości 2500 metrów.
Dotychczasowe pomiary pokazały, że temperatura w rurce nie spada poniżej 60 stopni Celsjusza, z wielokrotnymi wzrostami do 80 stopni. Zwierzę aktywnie chłodzi wnętrze swojego mieszkania, zanurzając się i wynurzając z rurki. Miesza w ten sposób wodę z zewnątrz, z tą podgrzewaną w rurce przez podłoże. Zaobserwowano też, że A. pompejana jest w stanie przez krótki czas przebywać w wodzie o temperaturze do 105 stopni Celsjusza.
Okazuje się, że w życiu w temperaturach sięgających 80 stopni pomagają zwierzęciu... bakterie. Alvinella pompejana pokryta jest włochatymi naroślami. Przyczepione są do nich bakterie, które mogą tworzyć grubą warstwę, chroniącą zwierzę przed ekstremalnymi temperaturami. Bez bakterii zwierzę ginie, gdy temperatura otoczenia przekroczy 55 stopni Celsjusza.
A co ma głębinowy wieloszczet wspólnego z nanosatelitami? Przed kilkoma miesiącami naukowcy ze Szwecji zaproponowali rozwiązanie problemu przegrzewania się nanosatelitów inspirowane badaniami nad A. pompejana.
Mrówka-pędziwiatr
Cataglyphis bombycina biegają wyjątkowo szybko. Bo muszą. Te żyjące na Saharze mrówki wychodzą na powierzchnię na bardzo krótko, gdy ich główni wrogowie, jaszczurki, szukają schronienia w cieniu. A jaszczurki przecież lubią słońce. Jeśli się chowają, to naprawdę musi być gorąco.
Z okazji korzystają Cataglyphis bombycina. I pędzą do ciał zwierząt, zabitych przez upał. Te maleństwa poruszają się z prędkością 3,1 km/h, czyli 855 milimetrów na sekundę. W ciągu tej sekundy przebywają odległość 108 razy większą, niż długość ich ciała. Teraz porównajmy ich osiągnięcia z prędkością człowieka. H. sapiens o wzroście 170 cm musiałby w ciągu sekundy przebyć 183,6 metra, by dorównać mrówce. Oznacza to prędkość 661 km/h. Znacie kogoś, kto tak szybko jechał samochodem? A mrówka biega tak szybko, że dorówna kroku człowiekowi idącemu średnim tempem.
O tej porze dnia, gdy mrówki wychodzą na powierzchnię, temperatura piasku może sięgać 70 stopni Celsjusza. Tymczasem zwierzę musi utrzymać temperaturę własnego ciała poniżej zabójczej dla niego granicy 53,6 stopnia. Przetrwanie zapewniają zwierzęciu nie tylko sprawne odnóża, ale też srebrne włoski. Pędząca mrówka wygląda jak poruszająca się kropla rtęci. Pokrywające zwierzę włoski mają niezwykłe właściwości, które mogą zainspirować stworzenie nowatorskich osłon termicznych. Odbijają światło w zakresie widzialnym oraz bliskiej podczerwieni, ułatwiając jednocześnie oddawania ciepła przez mrówkę w średniej podczerwieni.
10 000 kroków? Nigdy w życiu!
W zalanych jaskiniach wschodniej Hercegowiny żyją odmieńce jaskiniowe. Mogą dożywać 100 lat, są niezwykle odporne na brak żywności, której zresztą w jaskiniach nie jest zbyt wiele. Mogą nie jeść przez wiele lat, a gdy już się biorą za posiłek, to są nim niewielkie kręgowce, ślimaki i czasem owady. Odmieńce to główne drapieżniki wodnych systemów jaskiniowych. Średnia długość ciała odmieńca wynosi około 24 centymetrów, chociaż są i takie, które dorastają do 40 centymetrów.
Odmieńce są ślepe, ale wrażliwe na światło. Uciekają od niego. Ich larwy mają normalne oczy, jednak szybko przestają się one rozwijać i rozpoczyna się ich atrofia. To, co z nich pozostaje leży głęboko pod skórą właściwą i rzadko jest widoczne z zewnątrz.
Żyją w kompletnej ciemności pod wodą. Nie mają naturalnych wrogów. I nie są zbyt ruchliwe. Gdy naukowcy z Budapesztu oznakowali grupę tych zwierząt i śledzili ruchy każdego z osobników dowiedzieli się, że przez ponad 10 lat każdy z odmieńców przemieszcza się średnio o 10 metrów. Wydaje się, że jedną z niewielu rzeczy, zdolnych do zmuszenia odmieńca do ruchu jest poszukiwanie partnera. Salamandry kopulują jednak średnio raz na 12,5 roku.
Jednak nawet wśród nich zdarzają się rekordziści bezruchu. Jedna z obserwowanych salamander pozostawała w tym samym miejscu przez 2569 dni. To ponad 7 lat bezruchu!
« powrót do artykułu -
przez KopalniaWiedzy.pl
Ludzie, psy, szympansy, wrony, delfiny i wiele innych gatunków zwierząt, lubią się bawić. Chęć zabawy jest powszechna w królestwie zwierząt. Dotychczas badano pod tym kątem głównie kręgowce. Znacznie mniej wiemy o chęci do zabawy bezkręgowców. Może z wyjątkiem bawiących się ośmiornic. Tilman Triphan i Wolf Huetteroth z Uniwersytetu w Lipsku postanowili sprawdzić chęć do zabawy u muszek owocówek (Drosophila melanogaster). Okazało się, że i one lubią się bawić.
Na potrzeby eksperymentu naukowcy zbudowali niewielkie pojemniki, w których muszki miały dostęp do pożywienia oraz obracającej się karuzeli. Badania prowadzono na 112 muszkach, z których każda przez 3-4 dni przebywała samotnie w pojemniku. Naukowcy obserwowali, jak zwierzęta wchodzą w interakcje z otoczeniem. Grupę kontrolną stanowiły 194 muszki, które miały dostęp do identycznych pojemników, ale karuzela w nich się nie obracała.
Eksperyment wykazał, że muszki, które miały dostęp do obracającej się karuzeli, jednorazowo spędzały na niej do 5 minut. To znacznie dłużej, niż muszki z pojemników, gdzie karuzela się nie obracała. Co więcej, tam, gdzie karuzela się obracała, zwierzęta wielokrotnie ją odwiedzały. Niektóre z muszek z pojemników z obracającą się karuzelą wyraźnie jej unikały lub spędzały dużo czasu bezpośrednio przed nią. Wiadomo, że D. melanogaster reagują na nieznaną sobie sytuację unikając jej. To może tłumaczyć unikanie karuzeli, ale nie tłumaczy wielokrotnego dobrowolnego przebywania na niej.
Byliśmy zaskoczeni zachowaniem muszek. Spodziewałem się, że albo będą w ogóle unikały karuzeli, albo przebywanie na niej im się nie spodoba, mówi Huetteroth. Uczony dodaje, że aby uznać zachowanie zwierzęcia za zabawę, nie może być ono związane z przetrwaniem, musi być dobrowolne i celowe. Wyniki eksperymentu silnie sugerują, że tak właśnie jest w przypadku owocówek. Z formalnego punktu widzenia nie możemy całkowicie wykluczyć, że muszki, które trafiły na obracającą się karuzelę, czuły się tam uwięzione, czy to w wyniku oddziaływania bodźców wizualnych czy siły odśrodkowej. Jednak fakt, że wielokrotnie odwiedzały one karuzelę czyni takie przypuszczenie nieprawdopodobnym, dodaje uczony.
Interpretację, że muszki lubią się bawić wzmacnia inna część eksperymentu, w ramach której zwierzęta umieszczano w pojemnikach, gdzie znajdowały się dwie karuzele. Jedna z nich się poruszała, druga nie. Okazało się, że muszki poszukują poruszającej się karuzeli. Co więcej, gdy trafiły na karuzelę nieruchomą, przesiadały się na ruchomą. To wskazuje na podejmowanie świadomych decyzji i wyborze pomiędzy dostępnymi opcjami. To silna sugestia, że dla muszek poruszająca się platforma ma przynosi zależną od sytuacji korzyść, spełniając tym samym kluczowe kryterium dla zabawy, czytamy w opisie badań.
« powrót do artykułu -
przez KopalniaWiedzy.pl
Dzięki rzadkiej mutacji genetycznej Jo Cameron żyje bez bólu, jej rany szybciej się goją, a kobieta nigdy nie odczuwa lęku i strachu. Przed dwoma laty naukowcy z University College London (UCL) odkryli u niej zmutowany gen FAAH-OUT, a teraz opisali unikatowy mechanizm molekularny, za pomocą którego mutacja wyłącza ekspresję genu FAAH oraz wpływa na inne szlaki molekularne powiązane z gojeniem się ran i nastrojem. Ich odkrycie może stać się przyczynkiem do nowych prac w obszarach, w których Jo Cameron jest tak wyjątkowa.
Kobieta trafiła pod opiekę genetyków z UCL w 2013 roku, gdy jej lekarz zauważył, że nie odczuwa ona bólu po dużych zabiegach chirurgicznych na biodrze i dłoni. Naukowcy z Londynu przez 6 lat poszukiwali przyczyny tego zjawiska, aż zidentyfikowali gen, który nazwali FAAH-OUT, zawierający rzadką mutację. Połączenie z inną, częściej spotykaną mutacją w genie FAAH, dało Jo unikatowe cechy.
Co interesujące, gen FAAH-OUT znajduje się w „śmieciowym DNA”. To DNA niekodujące, które stanowi aż 98% genomu, a o którym do niedawna sądzono, że nie odgrywa żadnej roli. Ostatnio pojawia się jednak coraz więcej badań wskazujących na to, że „śmieciowe DNA” jest niezwykle ważne, a jedne z nich wskazują, że być może dzięki niemu jesteśmy ludźmi. Teraz okazało się, że FAAH-OUT wpływa na ekspresję genu FAAH, który stanowi część układu endokannabinoidowego i oddziałuje na odczuwanie bólu, nastrój oraz pamięć. Zrozumienie, w jaki sposób FAAH-OUT wpływa na ekspresję FAAH może pomóc np. w opracowaniu nowych leków przeciwbólowych.
Dzięki Jo Cameron naukowcy dowiedzieli się, że FAAH-OUT ma wpływ na ekspresję FAAH, a gdy wpływ ten – tutaj w wyniku mutacji – zostaje znacznie zmniejszony, dochodzi do dużej redukcji poziomu aktywności enzymów FAAH. FAAH-OUT to niewielki punkt na rozległym oceanie, który dopiero zaczęliśmy mapować. Stanowi on molekularną podstawę do pozbycia się bólu, zidentyfikowaliśmy też szlaki molekularne wpływające na nastrój i gojenie się ran. A na to wszystko ma wpływ mutacja w FAAH-OUT. Myślę, że nasze badania będą miały istotny wpływ na takie obszary naukowe jak gojenie się ran, depresja i wiele innych, mówi jeden za autorów badań, doktor Andrei Okorokov.
Analizy pokazały też, że mutacja, którą posiada Jo Cameron, a która wyłączyła FAAH, doprowadziła też do wyłączenia 348 innych genów oraz włączenia 797. Są wśród nich zmiany w szlaku WNT, który jest powiązany z gojeniem się ran. Zaobserwowano na przykład zwiększoną aktywność genu WNT16, który jest wiązany z regeneracją kości. Innymi istotnymi genami, których aktywność została zmieniona są BNDF, wiązany z regulacją nastroju oraz ACKR3, który wpływa na regulację poziomu opioidów. To te zmiany mogą powodować, że Jo Cameron nie czuje niepokoju, strachu czy bólu.
Początkowe odkrycie mutacji genetycznej u Jo Cameron było niezwykle ekscytujące. Ale dopiero teraz zaczyna robić się naprawdę ciekawie. Dzięki dokładnemu zrozumieniu, co dzieje się na poziomie molekularnym możemy próbować zrozumieć, jak działa cały mechanizm biologiczny, a to otwiera drogę do odkrycia leków, które pewnego dnia będą miały olbrzymi wpływ na życie pacjentów, dodaje profesor James Cox.
« powrót do artykułu
-
-
Ostatnio przeglądający 0 użytkowników
Brak zarejestrowanych użytkowników przeglądających tę stronę.