Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Znaleziona w Algierii skała jest starsza od Ziemi. Niczego starszego już nie znajdziemy?

Rekomendowane odpowiedzi

W maju ubiegłego roku na południu Algierii na pustyni Erg Chech znaleziono niezwykły kamień. Bliższe badania wykazały, że jest on starszy od Ziemi, powstał zaledwie 2 miliony lat po powstaniu Układu Słonecznego i prawdopodobnie stanowił część protoplanety, która nigdy nie przeistoczyła się w planetę.

Od ponad 20 lat badam meteoryty, a to najprawdopodobniej najwspanialszy meteoryt jaki widziałem", mówi Jean-Alix Barrat z Uniwersytetu Zachodniej Bretanii (Université de Bretagne Occidentale). Meteoryt Erg Chech 002 (EC 002) jest jedynym takim obiektem kiedykolwiek znalezionym na Ziemi. Jest achondrytem, a konkretnie andezytem, co już czyni go rzadkim. Jakby jeszcze tego było mało, okazało się, że magma, z której powstał, stygła przez co najmniej 100 000 lat. A badania izotopów aluminium i magnezu wskazują, że do krystalizacji tych pierwiastków w EC 002 doszło przed 4,565 miliarda lat temu na obiekcie macierzystym, który powstał 4,566 miliarda lat temu. Ziemia liczy sobie zaś 4,54 miliarda lat. Zatem EC 002 jest o około 20 milionów lat starszy od Ziemi.

Ten meteoryt to najstarsza skała magmowa, jaką dotychczas analizowano. Rzuca ona nowe światło na tworzenie się pierwotnej skorupy, która pokrywała najstarsze protoplanety, stwierdzili autorzy badań.

W przeciwieństwie do bazaltu, który powstaje w wyniku szybkiego ochładzania się lawy zawierającej magnez i żelazo, andezyt jest złożony w dużej mierze z krzemianów bogatych w sód. Na Ziemi andezyty powstają w strefach subdukcji, gdzie krawędzie płyt tektonicznych zanurzają się pod inne płyty.

Meteoryty achondrytowe są rzadko znajdowane. Jednak ostatnie eksperymenty sugerują, że mogą one powstawać w wyniku topnienia chondrytów. Jako, że obiekty zbudowane z chondrytów powszechnie występują w Układzie Słonecznym, nie można wykluczyć, że w przeszłości formujące się protoplanety bardzo często miały andezytową skorupę. Jednak analiza spektralna EC 002 wykazała, że nie jest on podobny do niczego, co znamy z Układu Słonecznego.

Obecnie bardzo rzadko spotykamy andezytowe meteoryty. Powstaje więc pytanie, jeśli na początku historii naszego układu planetarnego rzeczywiście powszechnie formowały się planety z andezytowymi skorupami, to co się z tym materiałem stało? Być może został rozbity i włączony w obecnie istniejące obiekty. Jako, że EC 002 jest tylko trochę starszy od Ziemi, nie można wykluczyć, że protoplaneta, z której pochodzi, rozpadła się, a z części jej materiału powstała nasza planeta.

Im bardziej zbliżamy się do początków Układu Słonecznego, tym bardziej sprawa się komplikuje. Myślę, że nie znajdziemy już na Ziemi żadnej starszej próbki niż EC 002, mówi Barrat.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Możemy natrafić na obiekty starsze niż Układ Słoneczny, ale chyba nie na Ziemi ze względu na wysokie prędkości. Chociaż kto wie? Ten kto jest pewien, niechaj pierwszy rzuci meteorytem, że tak pozwolę sobie sparafrazować zbiór opowiadań fantastycznych :) Oumuamua miała prędkość 90 km/s w peryhelium i jakieś 26 km/s w nieskończoności (velocity at infinity), bo porusza się po hiperboli. Więc jest bardzo prawdopodobne, że wyparuje po wejściu w atmosferę i ewentualnym uderzeniu w Ziemię.

Edytowane przez cyjanobakteria

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

A nikomu nie przyszło do głowy, że może to być fragment planety Thea, która uderzyła w Ziemię, w wyniku czego powstał nasz Księżyc?

Albo faktycznie jest to kamień pochodzący spoza Układu Słonecznego, jak ta "Omułka" (Oumuamua). Przez miliardy lat takie "Omółki" mogły miliony razy omijać Ziemię, ale niektóre mogły w nią trafić.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Tak stare znaleziska zawsze robiły na mnie wrażenie :) Niezwiązane z tematem, ale widziałem niedawno artykuł o najstarszych skamielinach zwierząt (gąbek) znalezionych w skałach sprzed 760-550 milionów lat, które żyły, o ile to są faktycznie gąbki, na długo przed eksplozją kambryjską.

 

Quote

The first animals: Ca. 760-million-year-old sponge-like fossils from Namibia

One of the most profound events in biospheric evolution was the emergence of animals, which is thought to have occurred some 600-650 Ma. Here we report on the discovery of phosphatised body fossils that we interpret as ancient sponge-like fossils and term them Otavia antiqua gen. et sp. nov. The fossils are found in Namibia in rocks that range in age between about 760 Ma and 550 Ma. This age places the advent of animals some 100 to 150 million years earlier than proposed, and prior to the extreme climatic changes and postulated stepwise increases in oxygen levels of Ediacaran time. These findings support the predictions based on genetic sequencing and inferences drawn from biomarkers that the first animals were sponges. Further, the deposition and burial of Otavia as sedimentary particles may have driven the large positive C-isotopic excursions and increases in oxygen levels that have been inferred for Neoproterozoic time.

https://www.researchgate.net/publication/255728283_The_first_animals_Ca_760-million-year-old_sponge-like_fossils_from_Namibia

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Przed 11 milionami lat w Marsa uderzyła asteroida, która wyrzuciła w przestrzeń kosmiczną fragmenty Czerwonej Planety. Jeden z tych fragmentów trafił na Ziemię i jest jednym z niewielu meteorytów, których pochodzenie można powiązać bezpośrednio z Marsem. Kto znalazł ten kawałek Marsa, nie wiadomo. Odkryto go w 1931 roku w jednej szuflad na Purdue University i nazwano Lafayette Meteorite, od miasta, w którym znajduje się uniwersytet. Nie wiadomo bowiem nawet, gdzie dokładnie meteoryt został znaleziony. Jednak jego stan zachowania wskazuje, że nie leżał na ziemi zbyt długo.
      Na kawałek skały jako pierwszy zwrócił uwagę dr O.C. Farrington, który zajmował się klasyfikacją kolekcji minerałów z uniwersyteckich zbiorów geologicznych. I to właśnie Farrington stwierdził, że skała uznana wcześniej za naniesioną przez lodowiec, jest meteorytem.
      Już podczas jednych z pierwszych badań Lafayette Meteorite naukowcy zauważyli, że na Marsie miał on kontakt z wodą w stanie ciekłym. Od tamtego czasu nie było jednak wiadomo, kiedy miało to miejsce. Dopiero teraz międzynarodowa grupa naukowa określiła wiek znajdujących się w meteorycie minerałów, które powstały w wyniku kontaktu z wodą. Wyniki badań zostały opublikowane na łamach Geochemical Perspective Letters.
      Profesor Marissa Tremblay z Purdue University wykorzystuje gazy szlachetne, jak hel, neon i argon, do badania procesów chemicznych i fizycznych kształtujących powierzchnię Ziemi. Uczona wyjaśnia, że niektóre meteoryty z Marsa zawierają minerały, które powstawały na Marsie w wyniku interakcji z wodą. Datowanie tych minerałów pozwoli nam więc stwierdzić, kiedy woda w stanie ciekłym istniała na powierzchni lub płytko pod powierzchnią Marsa. Datowaliśmy te minerały w Lafayette Meteorite i stwierdziliśmy, że powstały one 742 miliony lat temu. Nie sądzimy, by wówczas na powierzchni Marsa było zbyt dużo wody. Uważamy, że pochodziła ona z roztapiania się marsjańskiej wiecznej zmarzliny, a roztapianie się było spowodowane aktywnością magmy, do której sporadycznie dochodzi i dzisiaj, stwierdza uczona.
      Co ważne, naukowcy w trakcie badań wykazali, że ich datowanie jest wiarygodne. Na wiek minerałów mogło wpłynąć uderzenie asteroidy, która wyrzuciła z Marsa nasz meteoryt, ogrzewanie się meteorytu podczas pobytu przez 11 milionów lat w przestrzeni kosmicznej, czy też podczas podróży przez ziemską atmosferę. Wykazaliśmy, że żaden z tych czynników nie miał wpływu minerały w Lafayette, zapewnia Tremblay.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Najbliższe Ziemi czarne dziury znajdują się w gromadzie Hiady, informuje międzynarodowy zespół naukowy na łamach Monthly Notices of the Royal Astronomical Society. Hiady (Dżdżownice) to najbliższa Układowi Słonecznemu gromada otwarta. Najnowsze badania pokazują, że znajduje się tam co najmniej kilka czarnych dziur. Gromady otwarte to luźno powiązane grawitacją grupy setek do tysięcy zwykle młodych gwiazd. W Hiadach gwiazd jest około 300, a większości z nich nie widać gołym okiem.
      Dzięki obserwacjom prowadzonym przez należące do ESA obserwatorium kosmiczne Gaia znamy dokładne prędkości i pozycje gwiazd w Hiadach. Naukowcy z Włoch, Hiszpanii, Chin, Niemiec i Holandii przeprowadzili symulacje ruchu wszystkich gwiazd w Hiadach i porównali je z danymi z Gai. "Nasze symulacje odpowiadają rzeczywistej masie i rozmiarom Hiad tylko wówczas, gdy w centrum gromady znajdują się – lub znajdowały się niedawno – czarne dziury", mówi Stefano Torniamenti z Uniwersytetu w Padwie.
      Obserwowane właściwości Hiad najlepiej odpowiadają symulacjom, gdy przyjmiemy, że w gromadzie znajdują się 2-3 gwiazdowe czarne dziury. Symulacje, w których dziury zostały wyrzucone z gromady nie dawniej niż 150 milionów lat temu (Hiady mają ok. 600 milionów lat), także – choć nie tak dobrze – odpowiadają danym obserwacyjnym.
      Czarne dziury znajdujące się w Hiadach lub w pobliżu są zatem najbliższymi nam obiektami tego typu. Ich odległość od Układu Słonecznego wynosi około 45 parseków, czyli ok. 150 lat świetlnych. Dotychczas najbliższa nam znaną czarną dziurą była Gaia BH1 o odległości 480 parseków (1560 l.ś.) od Słońca.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astrofizyk Avi Loeb z Uniwersytetu Harvarda ma nadzieję, że zorganizowanej przez niego ekspedycji udało się zebrać szczątki pierwszego znanego meteorytu pochodzącego spoza Układu Słonecznego. Uczony wraz ze współpracownikami przez 10 dni przeczesywał za pomocą specjalnego magnetycznego urządzenia dno oceaniczne u wybrzeży Papui Nowej Gwinei. Udało się zebrać ponad 700 metalicznych sferuli, które będą badane zarówno w laboratorium Loeba, jak i w 2 niezależnych laboratoriach, które poprosił o pomoc. Miejsce poszukiwań zostało wybrane dzięki analizie danych z Departamentu Obrony oraz odczytów z dwóch pobliskich stacji sejsmicznych.
      Loeb sądzi, że wiele ze sferuli, drobnych kulek szklanych ze stopionego meteorytu, pochodzi spoza Układu Słonecznego. Jeśli analizy laboratoryjne wykażą, że ich skład jest różny od wszystkiego, co dotychczas znaleźliśmy, będzie do silna przesłanka na poparcie hipotezy uczonego. Jeśli ma rację, będziemy mieli do czynienia z trzecim – po asteroidzie Oumuamua i komecie Borisov – znanym nam gościem spoza Układu Słonecznego i pierwszym, którego szczątki opadły na Ziemię.
      Każdego roku na Ziemię opada ponad 5000 ton mikrometeorytów. Mamy więc olbrzymią liczbę sferuli z kosmosu, inne powstają w wyniku erupcji wulkanicznych oraz zanieczyszczeń emitowanych przez człowieka. Potrafimy odróżnić materiał pochodzący z Ziemi od materiału z przestrzeni kosmicznej. Możemy być też w stanie odróżnić ten z Układu Słonecznego od materiału spoza niego.
      Meteoryt IM1 (od Interstellar Meteor 1) eksplodował nad Pacyfikiem 8 stycznia 2014 roku. Loeb uważa, że przeszukał obszar, na który mogły spaść jego szczątki oraz nie wyklucza, że udało mu się je zebrać. Wielu astronomów powątpiewa jednak w jego słowa. Zwracają uwagę, że nie wiadomo, czy IM1 pochodził spoza Układu Słonecznego, a jeśli nawet tak, to czy jakiekolwiek jego szczątki dotarły do Ziemi. Profesor Steven Desch z Arizona State University zwraca uwagę, że zgodnie z jego wyliczeniami, a opierał się na danych z Departamentu Obrony, meteor wszedł w atmosferę z prędkością 45 km/s. Jeśli składał się z żelaza, to jeszcze w atmosferze odparowało 99,9999% jego masy. Znalezienie pozostałości po nim jest więc niezwykle mało prawdopodobne, tym bardziej, że rozproszyły się one na powierzchni wielu kilometrów kwadratowych.
      Loeb odpowiada, że wraz ze studentami opublikował artykuł, w którym – na podstawie obliczeń – wskazywali miejsce, gdzie powinny znajdować się tysiące sferuli. I rzeczywiście, znaleźliśmy je, mówi. Uczony dodaje, że dopiero analizy laboratoryjne pozwolą na rozstrzygnięcie sporu.
      Na razie spór trwa. Niektórzy przypominają, że dane z czujników Departamentu Obrony są niejednokrotnie niedokładne, gdyż wojsko nie udostępnia surowych odczytów z tajnych urządzeń. Przypominają, że niejednokrotnie pojawiały się twierdzenia o znalezieniu meteorytów spoza Układu Słonecznego i nigdy się one nie potwierdziły. Loeb odpowiada, że tym razem jest inaczej, gdyż US Space Command wykonało bezprecedensowy ruch i poinformowało NASA, że przeprowadzone obliczenia – mówiące o pochodzeniu meteorytu z przestrzeni międzygwiezdnej – są prawidłowe.
      Wyniki badań laboratoryjnych, które rozstrzygną spór, powinniśmy poznać w ciągu najbliższych tygodni.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Astrofizyk Stephen Kane z Uniwersytetu Kalifornijskiego w Riverside przeprowadził symulacje komputerowe, w których uzupełnił dwie rzucające się w oczy luki w Układzie Słonecznym. Pierwsza z nich to brak super-Ziemi, druga zaś to jej lokalizacja. Z symulacji wynika, że ich uzupełnienie zakończyło by historię życia na Ziemi.
      Największą planetą skalistą Układu Słonecznego jest Ziemia. Najmniejszym gazowym olbrzymem jest zaś Neptun o 4-krotnie większej średnicy i 17-krotnie większej masie. Nie ma żadnej planety o pośrednich cechach. W innych układach znajduje się wiele planet o wielkości i masie pomiędzy Ziemią a Neptunem. Nazywamy je super-Ziemiami, wyjaśnia Kane. Druga z luk to odległość od Słońca. Merkury położony jest o 0,4 jednostki astronomicznej (j.a.) od naszej gwiazdy, Wenus dzieli od niej 0,7 j.a., Ziemię – 1 j.a., a Marsa – 1,5 j.a. Kolejna planeta, Jowisz, znajduje się już 5,2 j.a. od Słońca. Kane w swoich symulacjach postanowił wypełnić tę lukę. Symulował więc istnienie tam planety o różnej masie i sprawdzał, jak jej obecność wpływała na inne planety.
      Wyniki symulacji – w ramach których Kane badał skutki obecności planety o masie 1-10 mas Ziemi na orbicie odległej od Słońca o 2-4 j.a. – opublikowane na łamach Planetary Science Journal, były katastrofalne dla Układu Słonecznego. Taka fikcyjna planeta wpłynęłaby na orbitę Jowisza, co zdestabilizowałby cały układ Słoneczny. Jowisz, największa z planet, ma masę 318-krotnie większa od Ziemi. Jego grawitacja wywiera więc duży wpływ na otoczenie. Jeśli super-Ziemia lub inny masywny obiekt zaburzyłby orbitę Jowisza, doszłoby do znacznych zmian w całym naszym otoczeniu. W zależności od masy i dokładnej lokalizacji super-Ziemi jej obecność – poprzez wpływ na Jowisza – mogłaby doprowadzić do wyrzucenia z Układu Słonecznego Merkurego, Wenus i Ziemi. Podobny los mógłby spotkać Urana i Neptuna. Jeśli zaś super-Ziemia miałaby znacznie mniejszą masę niż ta prowadząca do katastrofy i znajdowałaby się dokładnie po środku pomiędzy Marsem a Jowiszem, układ taki mógłby być stabilny. Jednak każde odchylenie w jedną lub drugą stronę skończyłoby się katastrofą.
      Badania Kane'a to nie tylko ciekawostka. Pokazują, jak delikatna jest równowaga w Układzie Słonecznym. Ma też znaczenie dla poszukiwania układów planetarnych zdolnych do podtrzymania życia. Mimo że podobne do Jowisza, odległe od swoich gwiazd, gazowe olbrzymy znajdowane są w zaledwie 10% układów, to ich obecność może decydować o stabilności orbit planet skalistych.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...