Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Tajemniczy sygnał z Proxima Centauri. Naukowcy wciąż nie znają źródła transmisji radiowej

Rekomendowane odpowiedzi

Naukowcy z Breakthrough Listen Project, który bazuje ne Berkeley SETI Research Center, a jego celem jest poszukiwanie sygnałów radiowych wysłanych przez obcą cywilizację, poinformowali o zarejestrowaniu nietypowej transmisji nadchodzącej z kierunku Proxima Centauri, gwiazdy najbliższej Słońcu. Wiemy, że gwieździe tej towarzyszą co najmniej dwie planety.

Sygnał został zarejestrowany przez 64-metrowy radioteleskop z obserwatorium Parkes w Nowej Południowej Walii. To drugi – po DSS-43 – największy na półkuli południowej radioteleskop z ruchomą czaszą.

Specjaliści zwracają uwagę, że sygnał „dryfuje”. Jego częstotliwość wydaje się nieco zmieniać, raz jest wyższa, raz niższa, co ma związek albo z ruchem orbitalnym Ziemi, albo źródła sygnału. Na tej podstawie wnioskują, że nie pochodzi on z anteny umieszczonej na Ziemi. Zatem sygnał jest pozaziemski. Co nie oznacza, że pochodzi od obcej cywilizacji.

Jeśli rejestrujemy taki sygnał i wiemy, że nie pochodzi on z powierzchni Ziemi, wiemy, że to sygnał pozaziemski. Niestety, ludzie wystrzelili w przestrzeń kosmiczną wiele źródeł pozaziemskich sygnałów, stwierdza Jason Wright z Penn State University. Może to być bowiem transmisja danych telemetrycznych z satelity. Ruch satelitów wokół Ziemi powoduje, że dochodzi do zmian częstotliwości ich sygnału. Faktem jest, że prawdopodobieństwo, iż teleskop przypadkowo odbiera transmisję z satelity jest niewielkie, ale nie można go wykluczyć. W końcu nad naszymi głowami krąży około 2700 działających satelitów.

Kolejna możliwość jest taka, że sygnał pochodzi z obiektu znajdującego się poza Proximą Centauri. Obiekt ten musiałby znajdować się w prostej linii za gwiazdą z punktu widzenia Ziemi. Jeśli rzeczywiście tak jest i źródłem sygnału jest naturalny obiekt, którego nie widzimy, to byłoby to również interesujące odkrycie. Wiemy, że sygnały radiowe są emitowane np. przez kwazary czy pulsary, ale emisja ze źródeł naturalnych obejmuje znaczną część spektrum. I to właśnie fakt, że emisja jest w tak wąskim zakresie, jest najbardziej interesujący. Nie znamy żadnego naturalnego źródła takiego sygnału, mówi Andrew Siemion z Uniwersytetu Kalifornijskiego w Berkeley. Być może istnieją nieznane nam zjawiska związane z fizyką plazmy, które powodują powstawanie takiego sygnału, ale obecnie, jedyne źródła, jakie znamy, to źródła techniczne, dodaje Siemion.

Nie można też wykluczyć, że zarejestrowany sygnał pochodzi z naturalnego źródło o silnym polu magnetycznym. W Układzie Słonecznym źródłem takich sygnałów radiowych jest Jowisz. Być może wokół Proxima Centauri krąży duża planeta o silnym polu magnetycznym. To możliwe, jednak trzeba zwrócić uwagę, że gdyby taka podobna do Jowisza planeta tam istniała, to emitowane przez nią sygnały byłyby około 1000-krotnie zbyt słabe, żeby mogły je zarejestrować ziemskie radioteleskopy. Musielibyśmy przyjąć, że naturalne sygnały radiowe emitowane przez tę hipotetyczną planetę są znacznie silniejsze niż emisja radiowa z Jowisza. Jest to mało prawdopodobne, ale nie niemożliwe.

Zawsze też istnieje możliwość, że sygnał pochodzi z... bezpośredniego sąsiedztwa radioteleskopu. Dość przypomnieć, że przed pięciu laty naukowcy z obserwatorium Parkes zarejestrowali sygnały świadczące o tym, że głęboko w kosmosie dzieje się coś niezwykłego. Analiza danych wykazała, że radioteleskop złapał sygnał z... kuchenki mikrofalowej w obserwatorium.

Historia naszego sygnału rozpoczęła się w kwietniu ubiegłego roku, kiedy to naukowcy pracujący przy Breakthrough Liten obserwowali Proxima Centauri. Chcieli zarejestrować pochodzące z gwiazdy rozbłyski, by badać, jak wpływają one na krążące planety. W październiku jeden z naukowców analizujących uzyskane dany trafił na nietypowy sygnał o częstotliwości 982,002 MHz. Szybko okazało się, że to najbardziej ekscytujący sygnał, jaki znaleziono w ramach projektu Breakthroug Listen. Zyskał on miano BLC1 od Breakthroug Listen Candidate 1.

Na początku przyszłego roku ma ukazać się pierwsza praca naukowa dotycząca BLC1. Przed specjalistami prawdopodobnie jeszcze wiele miesięcy analiz, zanim jednoznacznie stwierdzą, co jest źródłem tajemniczego sygnału.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Częstotliwość 982,002 MHz. Dosyć okrągła wartość. Obca cywilizacja raczej nie będzie używała takich samych jednostek czasu jak my. No chyba że to sygnał skierowany specjalnie dla nas ;) Ciekawe jest że może pochodzić właśnie z najbliższej nam gwiazdy. Pozostaje czekać. Jeśli się powtórzy to będzie coś! Jeśli nie, to jak zwykle zostaną nam spekulacje.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Wiadomość Arecibo, która była raczej bardzo ciekawym chwytem marketingowym niż autentyczna próbą skomunikowania się z kimkolwiek, używa długości fali jako jednostki miary. Wielkości wyrażone w wiadomości używały jej wielokrotności do określenia rozmiarów rzeczywistych. Pierwsze część wiadomości natomiast zawierała definicje liczb.

Edytowane przez cyjanobakteria

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Godzinę temu, Astro napisał:

Tylko nie wiem, czy złapią to w systemie dziesiętnym

Jedynym unikalnym systemem liczbowym jest dwójkowy.
Najprostszym "sztucznym" sygnałem - ciąg kolejnych liczb pierwszych.
 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
1 hour ago, Astro said:

Mogą mieć jednak inną liczbę palcy, a co gorsza, w ogóle mogą ich nie mieć. ;)

Mają jeszcze niecałe 25k lat na wyewoluowanie :) Swoja drogą, wyczytałem kiedyś, że gromady kuliste jak M13, szczególnie centra, to bardzo nieprzyjazne dla życia miejsca z tego. To setki tysięcy starych gwiazd bardzo gęsto upakowanych w kuli o relatywnie niewielkiej średnicy, które mogą zakłócać własne orbity. Nie wiem jak tam z metalicznością tych obiektów. Podejrzewam, ze ewolucja palców ewentualnych odbiorców to nie jest ich największe zmartwienie :)

 

14 minutes ago, peceed said:

Jedynym unikalnym systemem liczbowym jest dwójkowy.
Najprostszym "sztucznym" sygnałem - ciąg kolejnych liczb pierwszych.

Wydaje mi się, że jakby na poważnie traktowali chęć komunikacji, to musieli by wysyłać regularnie jakiś bardzo prosty sygnał - beacon. I co jakiś czas puszczać inne informacje. Na podobnej zasadzie działają radiostacje liczbowe z czasów zimnej wojny z tym, że wiadomości tam nadawane są oczywiście zaszyfrowane.

Edytowane przez cyjanobakteria

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
53 minutes ago, Astro said:

Owszem, nawet bardzo, a z metalicznością kiepsko. Na szczęście metaliczność Proximy jest większa niż słoneczna i Proxima nie leży w centrum gromady kulistej. :)

Na Proximie mają inne problemy ;) Pamiętam, że przynajmniej jedna z planet krąży po bardzo ciasnej orbicie, a samej gwiździe zdarzają się często rozbłyski.

Edytowane przez cyjanobakteria

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Po raz pierwszy udało się oszacować globalną ilość siarki emitowanej przez oceany. Badania przeprowadzone przez międzynarodowy zespół naukowy z Anglii, Hiszpanii, Indii, Argentyny, Chin, Francji i USA wykazały, że emitując siarkę, wytwarzaną przez organizmy żywe, oceany schładzają klimat bardziej, niż dotychczas przypuszczano. Szczególnie jest to widoczne nad Oceanem Południowym.
      Z artykułu opublikowanego na łamach Science Advances dowiadujemy się, że oceany nie tylko przechwytują i przechowują energię cieplną ze Słońca, ale również wytwarzają gazy, które mają natychmiastowy bezpośredni wpływ na klimat, na przykład powodują, że chmury są jaśniejsze i lepiej odbijają promieniowanie cieplne. Autorzy badań skupili się przede wszystkim na metanotiolu (MeSH). To gaz o wzorze chemicznym CH3SH.
      Emitowany przez oceany siarczek dimetylu to ważne źródło aerozoli ochładzających klimat. Jednak w oceanach większość siarki pochodzącej z organizmów żywych nie zmienia się w siarczek dimetylu, ale w metanotiol. Gaz ten, ze względu na duża reaktywność, trudno jest jednak zarejestrować, stąd też jego wpływ na klimat pozostawał nieznany.
      Autorzy nowych badań stworzyli bazę danych dotyczącą koncentracji MeSH w wodzie morskiej, zidentyfikowali czynniki statystyczne pozwalające na określenia ilości MeSH i opracowali mapę miesięcznych emisji tego związku, dodając je do emisji siarczku dimetylu.
      Dzięki temu dowiedzieli się, że nad Oceanem Południowym emisje MeSH zwiększają o 30–70 procent ilość aerozoli zawierających siarkę, wzmacniają więc wywierany przez ten pierwiastek efekt chłodzący, jednocześnie pozbawiają atmosferę utleniaczy, co z kolei zwiększa czas trwania dimetylu siarki, pozwalając na jego transport na większe odległości.
      Odkrycie to jest znaczącym rozwinięciem jednej z najważniejszych teorii dotyczących roli oceanów w regulowaniu klimatu na Ziemi.
      Opracowana przed 40 lat teoria mówiła, że plankton żyjący na powierzchni oceanów wytwarza siarczek dimetylu, który po trafieniu do atmosfery ulega utlenieniu, tworząc aerozole. Aerozole te odbijają część promieniowania słonecznego z powrotem w przestrzeń kosmiczną, zmniejszając w ten sposób ilość ciepła docierającego do powierzchni planety. Ich wpływ chłodzący zostaje wzmocniony, jeśli wejdą w skład chmur. Nowe badanie pokazuje, w jaki sposób pomijany dotychczas MeSH wpływa na cały ten proces, wzmacnia go oraz jak ważne dla klimatu są aerozole zawierające siarkę. A skoro sama natura zawiera tak silne mechanizmy chłodzące, tym bardziej pokazuje to, jak wielki wpływ na atmosferę wywołuje działalność człowieka.
      To ten element klimatu, który ma największy wpływ chłodzący, a który jest najsłabiej rozumiany. Wiedzieliśmy, że metanotiol jest emitowany przez oceany, ale nie wiedzieliśmy, jak duża jest to emisja i gdzie do niej dochodzi. Nie wiedzieliśmy też, że ma tak silny wpływ na klimat. Modele klimatyczne znacząco przeceniają wpływ promieniowania słonecznego na Ocean Południowy, w dużej mierze dlatego, że nie są w stanie prawidłowo symulować wpływu chmur. Nasze prace częściowo wypełniają tę lukę, stwierdzają badacze.
      Główny autor badań, Charel Wohl z barcelońskiego Institut de Ciències del Mar dodaje, że poznanie wielkości emisji MeSH pozwoli na lepsze reprezentowanie chmur nad Oceanem Południowym i stworzenie modeli lepiej przewidujących ich wpływ chłodzący.
      Dzięki poznaniu ilości emitowanego metanotiolu, dowiadujemy się, że średnia roczna emisja siarki ze znanych źródeł oceanicznych jest o 25% wyższa, niż sądzono. Gdy dane te dodano do najlepszych modeli klimatycznych, okazało się, że wpływ tej emisji jest znacznie bardziej widoczny na półkuli południowej, na której powierzchnia oceanu jest większa, a ludzka aktywność mniejsza.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      W miarę wzrostu globalnych temperatur drzewa będą emitowały więcej izoprenu, który pogorszy jakość powietrza, wynika z badań przeprowadzonych na Michigan State University. Do takich wniosków doszedł zespół profesora Toma Sharkeya z Plant Resilience Institute na MSU. Naukowcy zauważyli, że w wyższych temperaturach drzewa takie jak dąb czy topola wydzielają więcej izoprenu. Mało kto słyszał o tym związku, tymczasem jest to drugi pod względem emisji węglowodór trafiający do atmosfery. Pierwszym jest emitowany przez człowieka metan.
      Sharkey bada izopren od lat 70., kiedy był jeszcze doktorantem. Rośliny emitują ten związek, gdyż pozwala on im radzić sobie z wysoką temperaturą i szkodnikami. Problem w tym, że izopren, łącząc się z zanieczyszczeniami emitowanymi przez człowieka, znacznie pogarsza jakość powietrza. Mamy tutaj do czynienia z pewnym paradoksem, który powoduje, że powietrze w mieście może być mniej szkodliwe niż powietrze w lesie. Jeśli bowiem wiatr wieje od strony miasta w stronę lasu, unosi ze sobą tlenki azotu emitowane przez elektrownie węglowe i pojazdy silnikowe. Tlenki te trafiając do lasu wchodzą w reakcję z izoprenem, tworząc szkodliwe i dla roślin, i dla ludzi, aerozole, ozon i inne związki chemiczne.
      Sharkey prowadził ostatnio badania nad lepszym zrozumieniem procesów molekularnych, które rośliny wykorzystują do wytwarzania izoprenu. Naukowców szczególnie interesowała odpowiedź na pytanie, czy środowisko wpływa na te procesy. Skupili się zaś przede wszystkim na wpływie zmian klimatu na wytwarzanie izoprenu.
      Już wcześniej widziano, że niektóre rośliny wytwarzają izopren w ramach procesu fotosyntezy. Wiedziano też, że zachodzące zmiany mają znoszący się wpływ na ilość produkowanego izoprenu. Z jednej powiem strony wzrost stężenia CO2 w atmosferze powoduje, że rośliny wytwarzają mniej izoprenu, ale wzrost temperatury zwiększał jego produkcję. Zespół Sharkeya chciał się dowiedzieć, które z tych zjawisk wygra w sytuacji, gdy stężenie CO2 nadal będzie rosło i rosły będą też temperatury.
      Przyjrzeliśmy się mechanizmom regulującym biosyntezę izoprenu w warunkach wysokiego stężenia dwutlenku węgla. Naukowcy od dawna próbowali znaleźć odpowiedź na to pytanie. W końcu się udało, mówi główna autorka artykułu, doktor Abira Sahu.
      Kluczowym elementem naszej pracy jest zidentyfikowanie konkretnej reakcji, która jest spowalniana przez dwutlenek węgla. Dzięki temu mogliśmy stwierdzić, że temperatura wygra z CO2. Zanim temperatura na zewnątrz sięgnie 35 stopni Celsjusza, CO2 przestaje odgrywać jakikolwiek wpływ. Izopren jest wytwarzany w szaleńczym tempie, mówi Sharkey. Podczas eksperymentów prowadzonych na topolach naukowcy zauważyli też, że gdy liść doświadcza wzrostu temperatury o 10 stopni Celsjusza, emisja izoprenu rośnie ponad 10-krotnie.
      Dokonane odkrycie można już teraz wykorzystać w praktyce. Chociażby w ten sposób, by w miastach sadzić te gatunki drzew, które emitują mniej izoprenu. Jeśli jednak naprawdę chcemy zapobiec pogarszaniu się jakości powietrza, którym oddychamy, powinniśmy znacząco zmniejszyć emisję tlenków azotu. Wiatr wiejący od strony terenów leśnych w stronę miast będzie bowiem niósł ze sobą izopren, który wejdzie w reakcje ze spalinami, co pogorszy jakość powietrza w mieście.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przemysł produkcji stali jest odpowiedzialny za około 10% antropogenicznej emisji węgla do atmosfery. Gdyby przemysł ten stanowił oddzielne państwo byłby 3. – po Chinach i USA – największym emitentem CO2. Przedstawiciele firmy Electra z Boulder twierdzą, że opracowali praktycznie bezemisyjny proces elektrochemicznej produkcji stali, a pozyskany w ten sposób materiał nie będzie droższy od wytworzonego metodami tradycyjnymi.
      Aż 90% CO2 emitowanego w procesie produkcji stali powstaje podczas wytopu żelaza z rudy. Dlatego też, jeśli chcemy mówić o dekarbonizacji procesu produkcji stali, mówimy o dekarbonizacji wytopu, stwierdza prezes i współzałożyciel Elektry, Sandeep Nijhawan.
      Electra opracowała „elektrochemiczny proces hydrometalurgiczny”, dzięki któremu zawarty w rudzie tlenek żelaza jest redukowany do żelaza w temperaturze 60 stopni Celsjusza. Nie trzeba przy tym spalać węgla. Najpierw ruda jest rozpuszczana w specjalnym roztworze kwasów. To znany proces hydrometalurgiczny, który stosowany jest np. podczas produkcji miedzi czy cynku. Jednak dotychczas nie udawało się go stosować w odniesieniu do żelaza. Nijhawan wraz z zespołem opracowali unikatowy proces, który to umożliwia. Dzięki niemu oddzielają zanieczyszczenia od rudy, a następnie pozyskują samo żelazo przepuszczając przez roztwór prąd elektryczny. Cały proces może być napędzany energią słoneczną i wiatrową. Ma on jeszcze jedną olbrzymią zaletę, do produkcji można używać tanich rud o niskiej zawartości żelaza. Możemy korzystać z rud, które obecnie są traktowane jak odpady. W kopalniach jest olbrzymia ilość takich rud, których nikt nie wydobywa, stwierdza Nijhawan.
      Electra podpisała już umowę z firmą Nucor Corporation, największym producentem stali w USA. Firma zebrała też 85 milionów dolarów od inwestorów za które rozwija swoją technologię i buduje eksperymentalną fabrykę w Boulder w USA. Ma ona ruszyć jeszcze w bieżącym roku, a przed końcem dekady ma rozpocząć się komercyjna produkcja stali z wykorzystaniem nowej technologii.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przestawienie światowego systemu energetycznego na źródła odnawialne będzie wiązało się z większą emisją węgla do atmosfery, gdyż wytworzenie ogniw fotowoltaicznych, turbin wiatrowych i innych urządzeń wymaga nakładów energetycznych. Jednak im szybciej będzie przebiegał ten proces, tym większe będą spadki emisji, ponieważ więcej energii ze źródeł odnawialnych w systemie oznacza, że źródła te będą w coraz większym stopniu napędzały zmianę. Takie wnioski płyną z badań, których autorzy oszacowali koszt zmiany systemu produkcji energii, liczony nie w dolarach, a w emisji gazów cieplarnianych.
      Wniosek z naszych badań jest taki, że do przebudowania światowej gospodarki potrzebujemy energii i musimy to uwzględnić w szacunkach. W jaki sposób by ten proces nie przebiegał, nie są to wartości pomijalne. Jednak im więcej zainwestujemy w początkowej fazie w zieloną energię, w tym większym stopniu ona sama będzie napędzała zmiany, mówi główny autor badań, doktorant Corey Lesk z Columbia University.
      Naukowcy obliczyli jaka będzie emisja gazów cieplarnianych związana z wydobyciem surowców, wytworzeniem, transportem, budowaniem i innymi czynnościami związanymi z tworzeniem farm słonecznych i wiatrowych oraz ze źródłami geotermalnymi i innymi. Do obliczeń przyjęto scenariusz zakładający, że świat całkowicie przechodzi na bezemisyjną produkcję energii.
      Jedne z wcześniejszych badań pokazują, że przestawienie całej światowej gospodarki (nie tylko systemu energetycznego) na bezemisyjną do roku 2050, kosztowałoby 3,5 biliona dolarów rocznie. Z innych badań wynika, że same tylko Stany Zjednoczone musiałyby w tym czasie zainwestować nawet 14 bilionów dolarów.
      Teraz możemy zapoznać się z badaniami pokazującymi, jak duża emisja CO2 wiązałaby się ze zbudowaniem bezemisyjnego systemu produkcji energii.
      Jeśli proces zmian będzie przebiegał w tym tempie, co obecnie – a zatem gdy pozwolimy na szacowany wzrost średniej globalnej temperatury o 2,7 stopnia Celsjusza do końca wieku – to do roku 2100 procesy związane z budową bezemisyjnego systemu produkcji energii będą wiązały się z emisją 185 miliardów ton CO2 do atmosfery. To dodatkowo tyle, ile obecnie ludzkość emituje w ciągu 5-6 lat. Będzie więc wiązało się to ze znacznym wzrostem emisji. Jeśli jednak tworzylibyśmy tę samą infrastrukturę na tyle szybko, by ograniczyć wzrost średniej temperatury do 2 stopni Celsjusza – a przypomnijmy, że taki cel założono w międzynarodowych porozumieniach – to zmiana struktury gospodarki wiązałaby się z emisją dodatkowych 95 miliardów ton CO2 do roku 2100. Moglibyśmy jednak założyć jeszcze bardziej ambitny cel i ograniczyć wzrost globalnej temperatury do 1,5 stopnia Celsjusza. W takim wypadku wiązałoby się to z wyemitowaniem 20 miliardów ton CO2, a to zaledwie połowa rocznej emisji.
      Autorzy badań zastrzegają, że ich szacunki są prawdopodobnie zbyt niskie. Nie brali bowiem pod uwagę emisji związanych z koniecznością budowy nowych linii przesyłowych, systemów przechowywania energii czy zastąpienia samochodów napędzanych paliwami kopalnymi przez pojazdy elektryczne. Skupili się poza tym tylko na dwutlenku węgla, nie biorąc pod uwagę innych gazów cieplarnianych, jak metan czy tlenek azotu. Zauważają też, że zmiana gospodarki wiąże się nie tylko z problemem emisji, ale też z innymi negatywnymi konsekwencjami, jak konieczność sięgnięcia po rzadziej dotychczas używane minerały, których złoża mogą znajdować się w przyrodniczo cennych czy dziewiczych obszarach, zauważają też, że budowa wielkich farm fotowoltaicznych i wiatrowych wymaga zajęcia dużych obszarów, co będzie wpływało na mieszkających tam ludzi oraz ekosystemy.
      Pokazaliśmy pewne minimum. Koszt maksymalny jest zapewne znacznie większy, mówi Lesk. Dodaje, że badania przyniosły zachęcające wyniki. Pokazują bowiem, że im szybciej i więcej zainwestujemy na początku, tym mniejsze będą koszty. Jeśli jednak wielkie inwestycje nie rozpoczną się w ciągu najbliższych 5–10 lat, stracimy okazję do znacznego obniżenia kosztów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przed dwoma dniami prezydent Biden popisał Inflation Reduction Act, ustawę przewidującą wydatkowanie z federalnego budżetu 437 miliardów dolarów w ciągu najbliższych 10 lat. Przewidziano w niej 370 miliardów USD na energetykę odnawialną i inne technologie niskoemisyjne. Jednak najbardziej interesujące są przepisy dotyczące technologii produkcji wodoru. Z jednej strony dlatego, że przewidziano środki znacznie większe niż spodziewali się analitycy, z drugiej zaś, że przepisy nie wyróżniają żadnej technologii pozyskiwania wodoru. Specjaliści zajmujący się rynkiem wodoru mówią, że dzięki temu w końcu można będzie mówić o początku prawdziwej rewolucji wodorowej. Wodór można przecież wykorzystać zarówno jako paliwo napędzające pojazdy czy statki, jak i do produkcji energii elektrycznej zasilającej nasze domy.
      Ustawa przewiduje bowiem, że producenci wodoru mogą pomniejszyć należny państwu podatek, a wielkość tego pomniejszenia będzie zależała wyłącznie od ilości dwutlenku węgla emitowanego podczas produkcji wodoru. I tak producenci wykorzystujący najczystszą obecnie metodę pozyskiwania wodoru, w czasie której na każdy kilogram wodoru emituje się 0,45 kg CO2, będą mogli odpisać 3 USD na każdy wytworzony kilogram wodoru. Dzięki temu wodór taki może być tańszy niż tzw. szary wodór uzyskiwany z gazu metodą reformingu parowego. W metodzie tej na każdy kilogram wodoru emituje się 8–10 kg CO2. Obecnie cena szarego wodoru w USA to około 2 USD/kg. Dlatego też niemal cały wodór – ok. 10 milionów ton rocznie – produkowany w Stanach Zjednoczonych wytwarzany jest tą metodą.
      Największym na świecie producentem wodoru są Chiny. Państwo Środka wytwarza 25 milionów ton tego pierwiastka rocznie, z czego aż 62% uzyskuje się z węgla, co wiąże się z emisją 18–20 kg CO2 na kilogram wodoru. Zarówno USA jak i Chiny produkują czysty tzw. zielony wodór uzyskiwany metodą elektrolizy z wykorzystaniem odnawialnych źródeł energii, ale produkcja ta nie przekracza 1% całości. Ten zielony wodór kosztuje bowiem ok. 5 USD/kg. Teraz, dzięki możliwości odpisania 3-dolarowego podatku, stanie się on konkurencyjny cenowo z szarym wodorem.
      Amerykanie opracowali też plan dojścia do produkcji zielonego wodoru bez ulg podatkowych. Przepisy przewidują, że do roku 2026 kwota, którą można będzie odpisać od kilograma zielonego wodoru zostanie zmniejszona do 2 USD, a w roku 2031 wyniesie 1 USD.
      Przepisy te znacznie przyspieszą transformację wodorową. Specjaliści z National Renewable Energy Laboratory spodziewali się, że cena zielonego wodoru spadnie o trzy dolary do roku 2026. Teraz, dzięki ustawie, spadnie ona natychmiast. Mamy gwałtowne obniżenie kosztów do poziomu, przy którym zielony wodór staje się konkurencyjny, a w wielu miejscach tańszy, od wodoru pozyskiwanego z paliw kopalnych. Stąd też wielkie nadzieje związane z nową ustawą.
      Wspomniany odpis podatkowy to tylko jeden z ostatnich kroków na rzecz wodorowej rewolucji. W ubiegłym roku w życie weszła ustawa Infrastructure Investment and Jobs Act, w której przewidziano 8 miliardów USD na stworzenie w USA ośmiu regionalnych „hubów wodorowych” produkujących zielony wodór. W oczekiwaniu na rozdysponowanie tych pieniędzy, co ma nastąpić we wrześniu lub październiku, przedsiębiorstwa zgłosiły 22 projekty potencjalnych hubów.
      Wkrótce też ma ruszyć warty 2,65 miliarda USD projekt firm Mitsubishi Power Americas i Magnum Development, w ramach którego zainstalowane zostaną 840-megawatowe turbiny zasilane mieszaniną gazu naturalnego i wodoru, wspierane przez instalację fotowoltaiczną. W miejscu tym 220-megawatowy system elektrolizy będzie wytwarzał wodór. W znajdujących się w pobliżu podziemnych wysadach solnych powstaną zaś magazyny przechowujące do 300 GWh energii w postaci wodoru.
      Nowe amerykańskie przepisy powinny znacznie przyspieszyć prace prowadzone chociażby przez Hydrogen Council. To ogólnoświatowa organizacja skupiająca obecnie 132 korporacje pracujące nad technologiami wodorowymi.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...