
Koronawirus przedostaje się do mózgu przez nos? Naukowcy określili prawdopodobną drogę infekcji
By
KopalniaWiedzy.pl, in Medycyna
-
Similar Content
-
By KopalniaWiedzy.pl
Co najmniej od początku bieżącego roku media ekscytują się doniesieniami o pojawieniu się nowych wariantów wirusa SAR-CoV-2. Nie od dzisiaj wiemy, że wirusy mutują, więc nowych wariantów należało się spodziewać. Jednak zmiany mogą niepokoić, szczególnie jeśli wpływają na naszą pamięć immunologiczną lub skuteczność szczepionek. Naukowcy postanowili zbadać jakiego rodzaju zmiany zachodzą wśród koronawirusów atakujących ludzi od dziesiątków lat i dowiedzieć się, w jaki sposób mutacje SARS-CoV-2 mogą wpłynąć na przyszłe interakcje wirusa z człowiekiem.
Znamy setki koronawirusów krążących wśród nietoperzy, świń, wielbłądów czy kotów. Wiemy też, że 7 z nich atakuje ludzi. Cztery powodują objawy podobne do łagodnego przeziębienia i zarażają w sezonie grypowym kilkadziesiąt procent chorych. To sezonowe wirusy 229E, NL63, OC43 oraz HKU1. Trzy kolejne wirusy mogą powodować poważne zachorowania i prowadzić do zgonu: MERS-CoV, SARS-CoV oraz SARS-CoV-2.
Wiemy, że niektóre koronawirusy ponownie zarażają ludzi. Nie jest jednak jasne, czy jest to spowodowane dryfem genetycznym [czyli powolnymi mutacjami wirusa – red.] czy też utratą pamięci immunologicznej przez ludzki organizm. Chcieliśmy sprawdzić, czy istnieją jakieś dowody na to, że koronawirusy podobne do SARS-CoV-2 zmieniają się, by uniknąć ludzkiego układu odpornościowego, mówi doktor Kathryn Kistler z Wydziału Szczepionek i Chorób Zakaźnych we Fred Hutchinson Cancer Research Center w Seattle.
Naukowcy przyjrzeli się czterem koronawirusom wywołującym sezonowe przeziębienia. Wiemy, że wirusy te zidentyfikowano u ludzi 20–60 lat temu, wiemy, że ponownie infekują ludzi, nie wiemy jednak, czy przyczyną ponownych infekcji jest dryf genetyczny czy utrata przeciwciał.
Uczeni użyli wielu różnych technik obliczeniowych, by przyjrzeć się ewolucji tych wirusów w czasie. Szczególnie interesowały ich zmiany, jakie mogły zajść w proteinach mogących zawierać antygeny, czyli np. w białku S, które znajduje się na powierzchni wirusa i jest tym samym wystawione na działanie układu odpornościowego.
Okazało się, że u dwóch koronawirusów – OC43 i 229E – mamy do czynienia z szybkim tempem ewolucji białka S. Niemal wszystkie mutacje, które są korzystne dla tych wirusów, zaszły w regionie S1 tego białka. To właśnie ten region pomaga w infekowaniu komórek ludzkiego organizmu.
Wyniki badań wskazują, że wirusy te ulegają szybkiemu dryfowi genetycznemu, by uniknąć układu odpornościowego. Co więcej, z przeprowadzonych szacunków wynika, że przydatne wirusowi mutacje białka S (białka kolca) OC43 i 229E pojawiają się raz na 2-3 lata. To mniej więcej dwu- a nawet trzykrotnie szybciej niż mutacje obserwowane w wirusie grypy H3N2.
W związku z dużą złożonością i zróżnicowaniem sezonowych koronawirusów, nie jest do końca jasne, czy koronawirusy takie jak SARS-CoV-2 również ewoluują w ten sam sposób. Może się okazać, że co jakiś czas trzeba będzie zmieniać obecnie stosowane szczepionki przeciwko COVID-19 tak, by zwalczały nowe szczepy SARS-CoV-2. Kluczowym elementem walki z tą chorobą będzie więc ciągłe monitorowanie ewolucji antygenów wirusa, dodaje Trevor Bedford, główny autor badań.
Ze szczegółami pracy uczonych z Seattle można zapoznać się na łamach eLife.
« powrót do artykułu -
By KopalniaWiedzy.pl
Grupa naukowców z nowojorskiej Icahn School of Medicine at Mount Sinai odkryła dowody sugerujące, że urządzenia smart watch mogą wykrywać objawy COVID-19 jeszcze zanim u chorego pojawią się objawy. Dane takie uzyskano na podstawie badań, w których wzięło udział 297 pracowników służby zdrowia.
Jednym z wczesnych objawów COVID-19 jest pojawienie się stanu zapalnego w organizmie. Gdy tak się stanie, dochodzi do niewielkiej zmiany w przepływie krwi. Te zaś prowadzą do zmian rytmu serca, które smart watch może wykryć.
Badanych proszono, by przez dłuższy czas nosili Apple Watch. Zegarek notował przez dłuższy czas rytm serca, dzięki czemu określił normę dla badanej osoby. Wczesnym sygnałem infekcji była zaś nagła długotrwała zmiana rytmu. Badani, oprócz tego, że nosili zegarki, zainstalowali w nich również specjalną aplikację, która poszukiwała takich długotrwałych zmian w rytmie serca. Analiza danych z urządzeń wykazała, że zegarki wykryły 2/3 zainfekowanych osób średnio na 7 dni przed pojawieniem się u nich objawów.
To już kolejne badania wskazujące, że urządzenia smart watch mogą bardzo wcześnie wykrywać niepokojące zmiany w organizmie. Pozostaje więc stworzenie odpowiednich aplikacji, które będą w stanie śledzić i analizować takie dane oraz poinformują użytkownika o problemie.
« powrót do artykułu -
By KopalniaWiedzy.pl
Na Uniwersytecie w Umea udało się uzyskać niezwykle szczegółowy obraz adenowirusa jelitowego. Okazało się, że jest on jedną z najbardziej złożonych struktur biologicznych, jakie dotychczas obrazowano na poziomie atomowym. Dokładne określenie jego struktury pomoże w opracowaniu szczepionki przeciwko wirusowi, który każdego roku zabija ponad 50 000 dzieci w wieku poniżej 5. roku życia.
Adenowirusy to przede wszystkim wirusy układu oddechowego. Te atakujące układ pokarmowy są mniej znane. Muszą być one wyposażone w mechanizmy umożliwiające im przetrwanie kwaśnego środowiska żołądka, by mogły przez niego przejść i zarazić jelita.
Szwedzcy naukowcy, posługując się mikroskopem krioelektronowym byli w stanie stworzyć trójwymiarowy obraz ludzkiego adenowirusa jelitowego HAdV-F41 i zobrazować patogen do poziomu atomowego. Dowiedzieli się dzięki temu, że powłoka chroniąca wirusa przed kwasem żołądkowym składa się z dwóch tysięcy molekuł białek, zbudowanych w sumie z sześciu milionów atomów. Nasze prace pozwalają nam lepiej zrozumieć, w jaki sposób wirus przedostaje się przez żołądek i jelita. Dalsze prace dadzą odpowiedź na pytanie, czy wiedza te przyda się do opracowania szczepionki, która sobie z wirusem poradzi i będzie podawana doustnie, a nie za pomocą zastrzyku, mówi Lars-Anders Carlson.
Badania wykazały, że adenowirus jelitowy nie zmieniaj struktury gdy trafia na kwaśne środowisko. Zauważono też inne różnice pomiędzy adenowirusem jelitowym, a oddechowymi. Na te drugie istnieje szczepionka. Wszystkie te informacje ułatwią zrozumienie, jak przebiega infekcja i jak prowadzi do śmierci.
Badania nad adenowirusem jelitowym mogą pomóc też w walce z... COVID-19. Wiele opracowywanych szczepionek przeciwko tej chorobie bazuje na zmodyfikowanych adenowirusach. Jeśli udałoby się wykorzystać w tym celu adenowirusa jelitowego, to istnieje szansa na stworzenie szczepionki doustnej. To zaś znakomicie ułatwiłoby szczepienia.
« powrót do artykułu
-
-
Recently Browsing 0 members
No registered users viewing this page.