Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Zamiast węglem palą... żelazem. Dzięki temu do atmosfery nie trafia dwutlenek węgla

Rekomendowane odpowiedzi

W jednym z holenderskich browarów testowana jest właśnie niezwykła instalacja grzewcza, która nie emituje dwutlenku węgla do atmosfery. Wszystko dzięki temu, że zamiast węgla spalane jest w niej... żelazo.

Próba podpalenie kawałka żelaza to karkołomne przedsięwzięcie, którego koszty nie są warte potencjalnych zysków. Jednak inaczej ma się sprawa z drobno sproszkowanym żelazem. Ono, po wymieszaniu z powietrzem, jest wysoce palne. Gdy spala się taką mieszaninę, dochodzi do utleniania żelaza. Gdy spalamy węgiel produktem utleniania tego pierwiastka jest szkodliwy dla atmosfery dwutlenek węgla. Gdy zaś spalamy żelazo, produktem utleniania jest Fe203, czyli.. rdza. Bardzo interesującą cechą rdzy jest fakt, że to ciało stałe, które bardzo łatwo odzyskać po procesie spalania. W ten oto sposób spalając drobno sproszkowane żelazo otrzymujemy jedyny odpad – rdzę – który bardzo łatwo się wychwytuje.

Gęstość energetyczna żelaza wynosi 11,3 kWh/L czyli jest lepsza niż gęstość energetyczna benzyny. Znacznie gorzej ma się sprawa z energią właściwą. Ta wynosi jedynie 1,4 kWh/kg. To oznacza, że na określoną ilość energii żelazny proszek zajmuje nieco mniej miejsca niż benzyna, ale jest on niemal 10-krotnie cięższy. Sproszkowane żelazo nie przyda się więc do zasilania samochodów czy domów. Jedak może okazać się świetnym rozwiązaniem dla przemysłu.

W przypadku wielu procesów przemysłowych energia elektryczna, którą możemy pozyskiwać m.in. z czystych źródeł, nie jest w stanie zapewnić odpowiedniego rodzaju energii cieplnej. Dlatego też naukowcy z Uniwersytetu Technologicznego z Eindhoven od lat pracują nad wykorzystaniem żelaza w roli czystego paliwa. W ubiegłym miesiącu w jednym z browarów uruchomili testową instalację, w której spalane jest sproszkowane żelazo.

Powstała w procesie spalania rdza może być ponownie wykorzystywana. Żelazo jest traktowane jak rodzaj akumulatora. Spalanie go rozładowuje, zamieniając żelazo w Fe203. Aby je ponownie załadować należy pozbawić ten związek tlenu, odzyskując żelazo, które można ponownie spalić.

Żeby jednak cały proces był bezemisyjny, również odzyskiwanie żelaza powinno takie być. Dlatego też holenderscy naukowcy testują obecnie trzy sposoby na jego odzyskanie. Jeden z nich polega na przetransportowaniu rdzy taśmociągiem do pieca, gdzie w temperaturze 800–1000 stopni dodawany jest wodór. Tlenek żelaza zamienia się w żelazo, wodór zaś łączy z tlenem dając wodę. Minusem tej metody jest ponowne stapiania się sproszkowanego żelaza w jedną warstwę, którą należy zmielić. W drugiej metodzie wykorzystywany jest standardowy reaktor fluidalny. Również dodawany jest wodór, jednak cały proces odbywa się w temperaturze 600 stopni Celsjusza. Dzięki temu żelazo pozostaje w formie sproszkowanej, jednak jego odzyskiwanie trwa dłużej. Trzecia i ostatnia metoda polega na wdmuchiwaniu tlenku żelaza i wodoru do komory reaktora, w której panuje temperatura 1100–1400 stopni. Dzięki wdmuchiwaniu żelazo pozostaje w formie sproszkowanej. To może być najlepsza z trzech wymienionych technologii, jest jednak nowa, więc najpierw trzeba udowodnić, że działa.

Oczywiście zarówno do wyprodukowania wodoru czy uzyskania odpowiedniej temperatury w reaktorze/piecu potrzebna jest energia. Jednak może być to energia elektryczna uzyskana z czystych źródeł.

Można się zastanowić, dlaczego zamiast żelaza nie spalać po prostu wodoru. Problem w tym, że wodór jest bardzo trudny i niebezpieczny w transporcie. Jego przechowywanie również nie jest łatwe, wymaga wysokich ciśnień i niskich temperatur. Sproszkowane żelazo może być łatwo i długo przechowywane i bardzo łatwo jest je przewozić z olbrzymich ilościach np. koleją.
Sproszkowane żelazo może więc w przyszłości zastąpić węgiel w wielu procesach przemysłowych. Będzie to wymagało przerobienia obecnych instalacji do spalania węgla na takie do spalania żelaza. Holenderscy naukowcy badają też, czy sproszkowane żelazo może posłużyć jako paliwo dla masowców, wielkich statków będących dużym źródłem emisji węgla z paliw kopalnych.

Profesor Philip de Goey z Uniwersytetu Technologicznego w Eindhoven mówi, że ma nadzieję, iż w ciągu najbliższych 4 lat powstanie pierwsza 10-megawatowa instalacja przemysłowa do spalania sproszkowanego żelaza, a w ciągu 10 lat pierwsza elektrownia węglowa zostanie przerobiona na elektrownię na żelazo.

 


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

O tym że żelazo będzie się robiło elektrolitycznie mowa jest zapewne od czasów Faradaja, na pewno 30 lat temu, już, już przy hydroelektrowniach miały powstawać duże elektrolizernie produkujące czyste żelazo albo i wodór.  Prawda jednak jest taka, że jak na razie dużo lepiej jest robić wodór z węglowodorów. Ślad węglowy tego procesu jak na razie nie będzie mały.

Ale może nie trzeba robić proszku żelaza - na pewno nie chciałbym mieszkać w pobliżu miejsca gdzie się przechowuje taki proszek - może wystarczą ziemniaki, trochę miedzi i żelaza....

https://youtu.be/jja8iHfWDAc

 

16 godzin temu, KopalniaWiedzy.pl napisał:

Profesor Philip de Goey z Uniwersytetu Technologicznego w Eindhoven mówi, że ma nadzieję, iż w ciągu najbliższych 4 lat powstanie pierwsza 10-megawatowa instalacja przemysłowa do spalania sproszkowanego żelaza, a w ciągu 10 lat pierwsza elektrownia węglowa zostanie przerobiona na elektrownię na żelazo.

Zastanawiam się kto finansuje takie pomysły? Ja bym nie dał grosza :D Ale trzymam kciuki i gratuluję, dociągnąć taki pomysł do wdrożenia w skali technicznej to niezwykły wyczyn. Jestem pewien, że wymagało to od nich, nomen omen, żelaznej determinacji.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Już były przeróżne takie , i pomysły , i instalacje. To może mielić całe samochody? Np piratów drogowych , i niech patrzą!:)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Najlepsze jest to, że ta instalacja powstaje w browarze. Czyli miejscu gdzie chyba nie potrzebne są temperatury powyżej 100'C i pewnie normalnie stosowane są grzałki elektryczne, zasilane np. z solarów, wiatraków lub elektrowni atomowej.

Dlatego możliwe, że ta instalacja jest akcją marketingową skierowaną do smartfoniarskiego, łykającego każdy kit społeczeństwa.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
W dniu 17.11.2020 o 01:26, KopalniaWiedzy.pl napisał:

Powstała w procesie spalania rdza może być ponownie wykorzystywana. Żelazo jest traktowane jak rodzaj akumulatora. Spalanie go rozładowuje, zamieniając żelazo w Fe203. Aby je ponownie załadować należy pozbawić ten związek tlenu, odzyskując żelazo, które można ponownie spalić.

Rżną głupa za publiczne pieniądze.
Do produkcji żelaza używa się węgla.
Przetwarzanie energii elektrycznej na pracę poprzez silnik cieplny to kolejna głupota jakich mało.
Jako elektryczne ogniwo metalowo-tlenowe lepiej działają cynk, aluminium i lit.
Tylko ekoreligia pozwala finansować idiotów udających naukowców.

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
4 godziny temu, peceed napisał:

Do produkcji żelaza używa się węgla.

Dlatego ta metoda może mieć przewagę bo używa wodoru jako reduktora. Potrzebne jest tylko źródło taniego wodoru. Nie wypowiem się co do reszty, ale całość (kolejny raz) wygląda na prawdziwy koszmar technologa.

4 godziny temu, peceed napisał:

Jako elektryczne ogniwo metalowo-tlenowe lepiej działają cynk, aluminium i lit.
Tylko ekoreligia pozwala finansować idiotów udających naukowców.

Tak, ogniwa pozwalają prowadzić utlenianie w bardziej kontrolowany sposób. Zastanawia mnie dlaczego pominęli termity - to nie wymaga rozdrabniania, a składniki są dużo bezpieczniejsze i łatwiejsze w manipulacji niż wybuchowy proszek żelaza. Zresztą każdy proszek daje radę. Ja bym użył mąki - czysta ekologia :D

 

Mimo wszystko, nazywanie ich idiotami uważam za niezasłużone. Wdrożyli dość egzotyczne rozwiązanie, ja to szanuję.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
24 minutes ago, Jajcenty said:

Dlatego ta metoda może mieć przewagę bo używa wodoru jako reduktora. Potrzebne jest tylko źródło taniego wodoru.

Czy Pan jest informatykiem i żyje w świecie wirtualnym , złożonym z bitów a nie z pierwiastków?

 

Proces produkcji wodoru jest bardzo kosztowny. W skali przemysłowej robi się go z gazu ziemnego. W skali mniejszej - elektroliza wody. W skali laboratoryjnej - cynk+ kwas siarkowy.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
13 minut temu, banana napisał:

Czy Pan jest informatykiem i żyje w świecie wirtualnym , złożonym z bitów a nie z pierwiastków?

Robisz bardzo poważny błąd zakładając, że wszyscy są głupsi od Ciebie. Jestem chemikiem od 35 lat piszącym oprogramowanie na styku automatyka - biznes. 

13 minut temu, banana napisał:

Proces produkcji wodoru jest bardzo kosztowny. W skali przemysłowej robi się go z gazu ziemnego. W skali mniejszej - elektroliza wody. W skali laboratoryjnej - cynk+ kwas siarkowy.

A jak byś powiedział coś, czego jeszcze nie wiedzieliśmy? Czego nie rozumiesz w 'tani wodór'?  

p.s. Jak zaczynałem przygodę z chemią sto lat temu, to najbliższy aparat Kippa był w muzeum, a gazy w laboratorium otrzymywało się z ... butli.

Edytowane przez Jajcenty

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
9 godzin temu, Jajcenty napisał:

Mimo wszystko, nazywanie ich idiotami uważam za niezasłużone. Wdrożyli dość egzotyczne rozwiązanie, ja to szanuję.

Racja, idiotami są ludzie finansujący ich badania. To nie jest tak, że nie ma sensownych programów badawczych dla chemików. Jest o to trudniej niż dawniej, ale jeszcze daleko od momentu że jedynymi nowatorskimi polami badań są te dawniej pominięte jako bezsensowne.

9 godzin temu, Jajcenty napisał:

Zastanawia mnie dlaczego pominęli termity - to nie wymaga rozdrabniania, a składniki są dużo bezpieczniejsze i łatwiejsze w manipulacji niż wybuchowy proszek żelaza.

Przy termitach oczywistym i kłopotliwym pytaniem byłoby - po jaką cholerę używać tlenku żelaza jako utleniacza?
 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Nie widzę nic o wydajności energetycznej tego projektu, ale na oko jest dramatycznie niska.

Chyba bardziej wydajne będzie postawienie paneli fotowoltaicznych i nimi elektroliza wody, po czym palenie uzyskanym wodorem i tak w kółko

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Godzinę temu, tempik napisał:

Chyba bardziej wydajne będzie postawienie paneli fotowoltaicznych i nimi elektroliza wody, po czym palenie uzyskanym wodorem i tak w kółko

A to nie lepiej od razu prąd do silników podawać? Chcemy tym masowce napędzać, więc w charakterze akumulatora można by stosować koła zamachowe.

Cały układ ma wydajność nie większą niż panele. Żaglowce mają więcej sensu. Zakładając dużo taniego prądu można robić węglowodory z wody i dwutlenku węgla. Elektrownie musiałby wymrażać CO2 ze spalin i wysyłać do Afryki i Arabii do przerabiania na benzyny. Recykling CO2 na poziomie 50% powinien być łatwo osiągalny, resztę wymrażać po prostu z powietrza, albo korzystać z uprzejmości drzew i traw. 

Interesujące zadanie do policzenia, nadaje się na projekt semestralny z inżynierii chemicznej. Niestety nie potrafię nawet w przybliżeniu podać kiedy coś takiego mogłoby być opłacalne.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
12 hours ago, Jajcenty said:

Robisz bardzo poważny błąd zakładając, że wszyscy są głupsi od Ciebie. Jestem chemikiem od 35 lat piszącym oprogramowanie na styku automatyka - biznes. 

A jak byś powiedział coś, czego jeszcze nie wiedzieliśmy? Czego nie rozumiesz w 'tani wodór'?  

p.s. Jak zaczynałem przygodę z chemią sto lat temu, to najbliższy aparat Kippa był w muzeum, a gazy w laboratorium otrzymywało się z ... butli.

A od wczoraj piszesz w internetach, że trola pierwszy raz spotkałeś ?

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
25 minut temu, banana napisał:

A od wczoraj piszesz w internetach, że trola pierwszy raz spotkałeś ?

Że niby żart? I ja to mam kupić? Wolne żarty. Podpowiadam: żeby podnieść nieco reputację i być traktowanym poważnie przez innych trzeba napisać coś z sensem. Czasami, w zależności od rozmiarów pierwszego wrażenia, trzeba napisać coś z sensem nawet kilka razy.

  • Lubię to (+1) 1
  • Haha 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
Godzinę temu, Jajcenty napisał:

A to nie lepiej od razu prąd do silników podawać?

Lepiej,

ale z tego co rozumiem idea jest taka żeby zmagazynować energię aby później jak będzie potrzebna wykorzystać. Jest nadwyżka prądu, odbiorcy w danej chwili nie pobierają to zamiast marnować potencjał lepiej zmagazynować energię np w wodorze z elektrolizy czy sproszkowanym żelazie. Poza tym piece i podobne ustrojstwa mają duże moce, za dużo żeby na bieżąco z paneli zasilać, chyba że jest tego hektary i pracuje się tylko w godzinach około południowych.

 

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
15 minut temu, tempik napisał:

Jest nadwyżka prądu, odbiorcy w danej chwili nie pobierają to zamiast marnować potencjał lepiej zmagazynować energię np w wodorze z elektrolizy czy sproszkowanym żelazie.

No tu to się najlepiej spisują elektrownie szczytowo pompowe. Najbardziej nam zależy na przenośnych wehikułach np. masowce. Opalanie kotłów masowca sproszkowanym metalem ma rzeczywiście zaletę bardzo niskiej emisji. Ja bym opalał prętami magnezowymi - dużo ciepła, nie ma problemu ze spalinami - sam pył tlenku magnezu. Dodatkowo magnez świetnie się pali w dwutlenku węgla produkując węgiel! Zdaje się że pali się również w piasku produkując krzem. Tak, grzanie magnezem ma bardzo wiele zalet. Nie mogę się doczekać :D

 

Edytowane przez Jajcenty
  • Pozytyw (+1) 1

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
2 hours ago, Jajcenty said:

Ja bym opalał prętami magnezowymi - dużo ciepła, nie ma problemu ze spalinami - sam pył tlenku magnezu. Dodatkowo magnez świetnie się pali w dwutlenku węgla produkując węgiel! Zdaje się że pali się również w piasku produkując krzem.

Ciekawy pomysł. Robiłem kiedyś eksperymenty z wiórkami magnezowymi. Pięknie się palą oślepiającym blaskiem z domieszką UV :)

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
8 godzin temu, tempik napisał:

ale z tego co rozumiem idea jest taka żeby zmagazynować energię aby później jak będzie potrzebna wykorzystać

Podstawowa idea jest taka, aby pobawić się za pieniążki z grantów.
A że da się to podpiąć pod technologię bezemisyjną, to pieniądz gorszy wypiera lepszy :P
 

W dniu 17.11.2020 o 01:26, KopalniaWiedzy.pl napisał:

Profesor Philip de Goey z Uniwersytetu Technologicznego w Eindhoven mówi, że ma nadzieję, iż w ciągu najbliższych 4 lat powstanie pierwsza 10-megawatowa instalacja przemysłowa do spalania sproszkowanego żelaza, a w ciągu 10 lat pierwsza elektrownia węglowa zostanie przerobiona na elektrownię na żelazo.

Pomyliłem się, po prostu im odbiło.  Albo jadą po bandzie z tymi grantami.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
11 godzin temu, Jajcenty napisał:

No tu to się najlepiej spisują elektrownie szczytowo pompowe.

owszem, jak są warunki to nie ma nic lepszego.

11 godzin temu, Jajcenty napisał:

Opalanie kotłów masowca sproszkowanym metalem ma rzeczywiście zaletę bardzo niskiej emisji. Ja bym opalał prętami magnezowymi - dużo ciepła, nie ma problemu ze spalinami - sam pył tlenku magnezu.

Ja tu widzę same problemy:

1. wartość opałowa - wodór 140 MJ/kg, ON 46 MJ/kg, a żelazo? tylko 5 MJ/kg.  To suche, krowie łajno ma 15 MJ/kg :)  może w tym kierunku lepiej iść?

2. ogień ze spalania metalów to zupełnie co innego niż to co mamy dotychczas. Wszystko co palimy łącznie z węglem jest spalaniem gazów czy oparów. przy metalach tego nie ma, trzeba pewnie nieźle kombinować żeby ciepło spalania przenieść na klasyczny kocioł. Jak ktoś ma ochotę to może przetestować problemy takiego spalania podgrzewając czajnik z wodą na stosie zimnych ogni :D

 

Edytowane przez tempik

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
59 minut temu, tempik napisał:

1. wartość opałowa - wodór 140 MJ/kg, ON 46 MJ/kg, a żelazo? tylko 5 MJ/kg.  To suche, krowie łajno ma 15 MJ/kg :)  może w tym kierunku lepiej iść?

Pewnie że tak! To przecież 100% odnawialne źródło. Wodór jest słaby, generalnie węglowodory są lepszym nośnikiem wodoru.

 

Godzinę temu, tempik napisał:

Wszystko co palimy łącznie z węglem jest spalaniem gazów czy oparów. przy metalach tego nie ma, trzeba pewnie nieźle kombinować żeby ciepło spalania przenieść na klasyczny kocioł.

Korzystamy z faktu iż Termodynamika to wiedźma i energia jest energia. W tym przypadku większość energii przekazywana jest przez promieniowanie. Oczywiście zostaje trochę podgrzanego azotu do rekuperacji. Generalnie to luźny pomysł, ale jeśli ktoś ma chęć sfinansować badania w tym kierunku, to ja chętnie wezmę kasę ;)

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
15 minut temu, Jajcenty napisał:

Wodór jest słaby, generalnie węglowodory są lepszym nośnikiem wodoru.

Albo amoniak.

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
15 hours ago, Jajcenty said:

Że niby żart? I ja to mam kupić? Wolne żarty. Podpowiadam: żeby podnieść nieco reputację i być traktowanym poważnie przez innych trzeba napisać coś z sensem. Czasami, w zależności od rozmiarów pierwszego wrażenia, trzeba napisać coś z sensem nawet kilka razy.

Panie Jacenty, czy mogę Panu zadać intymne pytanie ? Czy Pan jeszcze może ?

1 hour ago, peceed said:

Albo amoniak.

I kwas mrówkowy
https://www.bbc.com/news/business-40403351
https://www.sciencedirect.com/science/article/abs/pii/S0378775305000327?via%3Dihub

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
3 minuty temu, banana napisał:

Czy Pan jeszcze może ?

Sorry, mam już chłopaka.

3 godziny temu, tempik napisał:

ak ktoś ma ochotę to może przetestować problemy takiego spalania podgrzewając czajnik z wodą na stosie zimnych ogni :D

Znalazłem! kiedyś znajomy metalurg coś plótł o grzaniu promieniowaniem - przypomniałem sobie i znalazłem https://pl.wikipedia.org/wiki/Piec_łukowy

 

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
51 minut temu, Jajcenty napisał:
55 minut temu, banana napisał:

Czy Pan jeszcze może ?

Sorry, mam już chłopaka.

Już od drugiego usera dostał kosza. Ciekawe kto będzie następny?;)

  • Haha 2

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach
2 godziny temu, Jajcenty napisał:

Znalazłem! kiedyś znajomy metalurg coś plótł o grzaniu promieniowaniem - przypomniałem sobie i znalazłem https://pl.wikipedia.org/wiki/Piec_łukowy

To już trochę coś innego bo tu nie ma paliwa które spalasz. Ale wróćmy na Ziemię. Do grzania zacieru na bimber wystarczy jakaś biomasa, np. resztki z produkcji. a do mobilnych zastosowań to sie nie nadaje

1 godzinę temu, 3grosze napisał:

Już od drugiego usera dostał kosza. Ciekawe kto będzie następny?;)

spokojnie, każda potwora znajdzie swojego amatora :D

 

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      Naukowcy pracujący nad Global Carbon Project, informują, że w bieżącym roku emisja CO2 ze spalania paliw kopalnych osiągnie rekordowo wysoki poziom. Z szacunków wynika, że do końca bieżącego roku ludzkość, spalając paliwa kopalne, wyemituje do atmosfery 37,4 miliardów ton dwutlenku węgla. To o 0,8% więcej niż w roku ubiegłym. Do tego należy dodać emisję związaną ze zmianami w użytkowaniu gruntów (np. wycinkę lasów), z której emisja wyniesie 4,2 miliarda ton. W sumie więc tegoroczna antropogeniczna emisja dwutlenku węgla osiągnie 41,6 miliarda ton, czyli o miliard ton więcej, niż w roku ubiegłym.
      W ciągu ostatniej dekady emisja ze spalania paliw kopalnych rosła, a z użytkowania gruntów zmalała aż o 20%, dzięki czemu średni poziom emisji utrzymywał się mniej więcej na tym samym poziomie. W bieżącym roku jest jednak inaczej. Rośnie zarówno emisja z paliw, jak i ze zmian użytkowania gruntu. W tym drugim przypadku jest to w znacznej mierze spowodowane przez susze, które pogarszają emisję ze zdegradowanych przez człowieka lasów.
      Pomimo rosnącej emisji autorzy raportu wykazują umiarkowany optymizm. Mówią, że po raz pierwszy widać wyraźnie, iż zmniejszanie wycinki lasów w ostatnich dekadach przynosi efekty, a coraz większy udział energii odnawialnej zarówno w energetyce, jak i transporcie, pokazuje, że szczyt zużycia paliw kopalnych jest coraz bliżej. Wciąż jednak nie wiadomo, jak odległy jest moment, gdy użycie paliw kopalnych zacznie spadać.
      Z przeprowadzonych szacunków wynika, że w roku bieżącym – w porównaniu z rokiem ubiegłym – emisja CO2 z węgla wzrośnie o 0,2%, z ropy naftowej o 0,9%, a z gazu o 2,4%. Udział tych paliw w emisji będzie wynosił, odpowiednio 41%, 32% i 21%. Uczeni przewidują, że emisja Chin, które odpowiadają obecnie za 32% emisji światowej, wzrośnie o 0,2%, chociaż możliwy jest też niewielki spadek. USA (13% globalnej emisji) zmniejszą swoją emisję o 0,6%. Indie (8% emisji CO2), wyemitują w bieżącym roku o 4,6% więcej niż w ubiegłym, a emisja UE (7%) zmniejszy się o 3,8%. Cała reszta świata wyemituje o 1,1% dwutlenku węgla więcej, niż w roku ubiegłym.
      Szacunki mówią też, że lotnictwo i transport morski, które emitują 3% całości CO2, a z których emisje nie są przypisywane do żadnego kraju, wyemitują o 7,8% więcej, ale wciąż będzie to o 3,5% mniej niż z czasów sprzed pandemii. Średni poziom CO2 w atmosferze w 2024 roku wyniesie 422,5 części na milion. To o 2,8 części na milion więcej niż w roku ubiegłym i o 52% więcej, niż w okresie przedprzemysłowym.
      Naukowcy zauważają też, że zjawisko El Niño doprowadziło do zmniejszenia absorpcji atmosferycznego CO2 przez ekosystemy w roku 2023, jednak sytuacja wkrótce powinna wrócić do normy. Lądy i oceany wciąż pochłaniają około połowy CO2 emitowanego przez człowieka.
      Uczeni z Global Carbon Budget uważają, że obecnie istnieje 50% ryzyko, że już za 6 lat każdy kolejny rok będzie o co najmniej 1,5 stopnia Celsjusza cieplejszy niż w okresie preindustrialnym. Stwierdzają również, że niemal skończył się czas, by powstrzymać globalne ocieplenie na poziomie poniżej 1,5 stopnia Celsjusza.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Oceany pochłaniają około 26% dwutlenku węgla emitowanego przez człowieka. Są więc niezwykle ważnym czynnikiem zmniejszającym nasz negatywny wpływ na atmosferę. Większość tego węgla – około 70% – wykorzystuje fitoplankton i inne organizmy żywe. Gdy one giną, resztki ich ciał opadają w postaci przypominającej płatki śniegu. Ten zawierający węgiel „śnieg” zalega na dnie, jest przykrywany osadami i pozostaje bezpiecznie zamknięty na bardzo długi czas, nie trafiając z powrotem do atmosfery. Jednak badania, których wyniki ukazały się właśnie na łamach Science wskazują, że proces ten nie wygląda tak prosto, jak byśmy chcieli.
      Grupa naukowców z Uniwersytetu Stanforda, Woods Hole Oceanographic Institution oraz Rutgers University zbudowała specjalny mikroskop, potocznie nazwany Gravity Machine, który pozwala badać mikroorganizmy i inne niewielkie elementy występujące w kolumnie wody o dowolnej długości. Okazało się, że „morski śnieg” nie opada na dno tak szybko, jak sądziła nauka. Mikroskop pozwolił na symulowanie zachowania „śniegu” w środowisku naturalnym i okazało się, że „płatki śniegu” ciągną za sobą śluzowe warkocze, która spowalniają ich opadanie. Czasem warkocze te całkowicie uniemożliwiają opadnięcie i „śnieg” pozostaje zawieszony w górnych częściach kolumny wody. Żyjące tam organizmy mogą go pochłaniać i w procesie oddychania wydalić do wody znajdujący się tam węgiel, a to z kolei zmniejsza tempo pochłaniania przez ocean CO2 z atmosfery.
      Mikroskop, za pomocą którego prowadzono badania, wykorzystuje koło o średnicy kilkunastu centymetrów. Do koła naukowcy wlewali wodę pobraną w oceanie na różnych głębokościach. Koło się obracało, a obecne w wodzie mikroorganizmy mogły swobodnie opadać pod wpływem grawitacji. Dzięki ruchowi obrotowemu koła, mikroorganizmy mogły bez końca opadać, w ten sposób możliwe jest symulowanie opadania na dowolną odległość. Temperatura, oświetlenie i ciśnienie wewnątrz koła dobiera jest odpowiednio do symulowanej głębokości, na której „znajduje się” badana próbka. Jednocześnie to, co dzieje się w próbce jest bez przerwy monitorowane za pomocą mikroskopu.
      Dzięki takiej konstrukcji instrumentu badawczego zauważono, że poszczególne „płatki śniegu” tworzą, niewidoczną goły okiem, śluzowatą strukturę ciągnącą się na podobieństwo warkocza komety. Odkrycia warkocza dokonano, gdy do próbki dodano niewielkie mikrokoraliki, by zbadać, jak będą one przepływały wokół „płatków”. Zauważyliśmy, że koraliki utknęły w czymś niewidzialnym, co ciągnęło się za płatkami, mówi jeden z badaczy. Bliższe badania pokazały, że ten śluzowaty warkocz dwukrotnie wydłuża czas pobytu „płatków” w górnych 100 metrach kolumny wody.
      Odkrycie pokazuje, że proces pochłaniania węgla przez oceany jest bardziej złożony niż sądziliśmy. Jest jednak mało prawdopodobne, by oznaczało ono, że oceany pochłaniają mniej węgla, niż sądzimy. Ilość tego węgla została bowiem określona metodami empirycznymi, więc wpływ warkocza został - choć nieświadomie - uwzględniony.


      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Od 2001 roku globalna emisja CO2 z pożarów lasów wzrosła o 60%, a w przypadku niektórych regionów lasu borealnego wzrost ten wyniósł niemal 300%, alarmuje międzynarodowy zespół naukowy. Eksperci z Wielkiej Brytanii, Brazylii, Hiszpanii, USA i Holandii, pracujący pod kierunkiem uczonych z University of East Anglia, podzielili światowe lasy na 12 „piromów”, jednostek, na których wzorce pożarów lasów są napędzane przez podobne czynniki, jak działalność człowieka, zjawiska naturalne czy zmiany klimatyczne. Przeprowadzili jedne z pierwszych badań, które w skali globalnej porównują pożary lasów z pożarami innych miejsc.
      Naukowcy wykazali, że jeden z największych „piromów” znajdują się w lasach borealnych Eurazji i Ameryki Północnej. Tam emisja z pożarów zwiększyła się niemal 3-krotnie w ciągu ostatnich 23 lat. Znaczący wzrost pożarów lasów zaobserwowano w lasach poza tropikami. Przyczyniły się one do dodatkowej emisji 500 milionów ton CO2 rocznie, a centrum tej emisji przesuwa się na północ.
      Zwiększenie emisji z pożarów lasów wiązane jest z dwoma czynnikami. Pierwszy to coraz częstsze pojawianie się wielkich upałów i suszy, które sprzyjają powstawaniu pożarów. Czynnik drugi to bardziej bujna roślinność, która zapewnia paliwo pożarom. Oba trendy są znacznie bardziej widoczne na wyższych szerokościach geograficznych na północy, które ocieplają się około 2-krotnie szybciej od światowej średniej.
      Badania pokazały, że w ciągu ostatnich dwóch dekad nie tylko zwiększyła się częstotliwość pożarów, ale również stały się one bardziej intensywne. Współczynnik spalania węgla, za pomocą którego mierzy się intensywność pożarów, wzrósł w badanym okresie o 50%. Wzrost zasięgu i intensywności pożarów lasów doprowadził do znacznego zwiększenia emisji do atmosfery. Obserwujemy też zdumiewające przesuwanie się głównego regionu pożarów na północ. Tłumaczymy to coraz większym wpływem zmian klimatu na lasy borealne, mówi główny autor badań, doktor Matthew Jones z UEA. Jeśli chcemy ochronić najważniejsze ekosystemy leśne przed rosnącym zagrożeniem pożarowym, musimy ograniczyć globalne ocieplenie, a to pokazuje, jak ważne jest zmniejszenie emisji, dodaje.
      W wyniku zwiększającej się liczby pożarów, ich rosnącej intensywności i przesuwania się głównego pasa pożarów na północ, lasy poza tropikami emitują już o 500 milionów ton CO2 rocznie więcej niż przed 20 laty. To też oznacza, że dochodzi do coraz większego zachwiania równowagi pomiędzy ilością CO2 przechwytywanego z powietrza przez lasy, a ilością, jakie lasy emitują.
      Szybkie przesuwanie się pożarów na obszary poza lasami tropikalnymi to widoczny znak rosnącej wrażliwości lasów na pożary. Wiemy, że po bardzo intensywnych pożarach las się słabo odradza, więc obecnie specjaliści z coraz większym zainteresowaniem badają, jak zwiększenie intensywności pożarów będzie wpływało w najbliższych dekadach na możliwości przechwytywania dwutlenku węgla przez lasy, stwierdza Jones.
      Wzrost intensywności i liczby pożarów lasów zbiega sę ze zmniejszeniem pożarów tropikalnych sawann. Wcześniejsze badania wykazały, że od roku 2001 całkowity obszar zniszczony przez pożary (zarówno terenów leśnych, jak i poza lasami), zmniejszył się o 25%, a główną przyczyną spadku jest mniej pożarów sawann. To niepokojący trend, gdyż podczas pożarów lasów dochodzi do znacznie większej emisji szkodliwych substancji, co zagraża zdrowiu zarówno mieszkańców okolic, w których wybuchł pożar, jak o osób mieszkających dalej, gdzie wiatr zanosi dym z pożarów.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Lit to kluczowy element przejścia na czystą energię. Wykorzystywany jest przede wszystkim do produkcji akumulatorów samochodowych oraz systemów przechowywania energii ze słońca i wiatru. Jednak obecnie wykorzystywane technologie pozyskiwania litu znacząco zanieczyszczają środowisko naturalne. Australijski Monash University poinformował właśnie o udanych testach pozyskiwania wodorotlenku litu bez użycia wody, środków chemicznych i przy minimalnym zużyciu energii.
      Testy prowadzi założona przez uniwersytet firma ElectraLith przy wsparciu giganta górniczego Rio Tinto, a uzyskiwany materiał jest tak dobrej jakości, że nadaje się do produkcji akumulatorów. Opracowana w ubiegłym roku technologia DLE-R (Direct Lithium Extraction and Refining) wykorzystuje elektromembrany i technologię elektrodializy do pozyskiwania wodorotlenku litu w jednym kroku. DLE-R można z łatwością skalować. Jak zapewniają wynalazcy, technologia nadaje się do pozyskiwania litu z różnego rodzaju solanek, czy to istniejących na powierzchni, czy to wydobywanych przy okazji wydobycia ropy naftowej.
      Jesteśmy szczególnie zadowoleni z wyników testów w Paradox Basin w Utah. Tam z solanki ze źródeł geotermalnych z dawnych odwiertów, z których wydobywano ropę naftową i gaz, uzyskaliśmy wodorotlenek litu o 99,9-procentowej czystości, nie używając przy tym wody, która jest coraz rzadszym zasobem w basenie Kolorado. To osiągnięcie, w połączeniu z możliwością pozyskiwania wodorotlenku litu ze solanki o nasyceniu litem mniejszym niż 60 części na milion, pokazuje, że DLE-R daje nam dostęp do tych źródeł litu w USA i Australii, których wykorzystanie uważane było dotychczas za nieekonomiczne, stwierdza dyrektor ElectraLith, Charlie McGill. A James Allchurch, dyrektor firmy Mandrake, do której należy pole wydobywcze gdzie prowadzono eksperymenty, już zapowiedział, że jego firma wdroży nową technologię. Niesamowita wydajność procesu DLE-R to kluczowy element naszego sukcesu biznesowego w Utah. DLE-R jest idealnie dostosowana do składu chemicznego solanki z Paradox Basin i chcemy współpracować z ElectraLith w przetwarzaniu większej ilości solanki, dodaje Allchurch.
      ElectraLith i Rio Tinto zapowiadają, że w 2026 roku rozpoczną pierwsze testy DLE-R na Salar del Rincón w Argentynie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Przestawienie światowego systemu energetycznego na źródła odnawialne będzie wiązało się z większą emisją węgla do atmosfery, gdyż wytworzenie ogniw fotowoltaicznych, turbin wiatrowych i innych urządzeń wymaga nakładów energetycznych. Jednak im szybciej będzie przebiegał ten proces, tym większe będą spadki emisji, ponieważ więcej energii ze źródeł odnawialnych w systemie oznacza, że źródła te będą w coraz większym stopniu napędzały zmianę. Takie wnioski płyną z badań, których autorzy oszacowali koszt zmiany systemu produkcji energii, liczony nie w dolarach, a w emisji gazów cieplarnianych.
      Wniosek z naszych badań jest taki, że do przebudowania światowej gospodarki potrzebujemy energii i musimy to uwzględnić w szacunkach. W jaki sposób by ten proces nie przebiegał, nie są to wartości pomijalne. Jednak im więcej zainwestujemy w początkowej fazie w zieloną energię, w tym większym stopniu ona sama będzie napędzała zmiany, mówi główny autor badań, doktorant Corey Lesk z Columbia University.
      Naukowcy obliczyli jaka będzie emisja gazów cieplarnianych związana z wydobyciem surowców, wytworzeniem, transportem, budowaniem i innymi czynnościami związanymi z tworzeniem farm słonecznych i wiatrowych oraz ze źródłami geotermalnymi i innymi. Do obliczeń przyjęto scenariusz zakładający, że świat całkowicie przechodzi na bezemisyjną produkcję energii.
      Jedne z wcześniejszych badań pokazują, że przestawienie całej światowej gospodarki (nie tylko systemu energetycznego) na bezemisyjną do roku 2050, kosztowałoby 3,5 biliona dolarów rocznie. Z innych badań wynika, że same tylko Stany Zjednoczone musiałyby w tym czasie zainwestować nawet 14 bilionów dolarów.
      Teraz możemy zapoznać się z badaniami pokazującymi, jak duża emisja CO2 wiązałaby się ze zbudowaniem bezemisyjnego systemu produkcji energii.
      Jeśli proces zmian będzie przebiegał w tym tempie, co obecnie – a zatem gdy pozwolimy na szacowany wzrost średniej globalnej temperatury o 2,7 stopnia Celsjusza do końca wieku – to do roku 2100 procesy związane z budową bezemisyjnego systemu produkcji energii będą wiązały się z emisją 185 miliardów ton CO2 do atmosfery. To dodatkowo tyle, ile obecnie ludzkość emituje w ciągu 5-6 lat. Będzie więc wiązało się to ze znacznym wzrostem emisji. Jeśli jednak tworzylibyśmy tę samą infrastrukturę na tyle szybko, by ograniczyć wzrost średniej temperatury do 2 stopni Celsjusza – a przypomnijmy, że taki cel założono w międzynarodowych porozumieniach – to zmiana struktury gospodarki wiązałaby się z emisją dodatkowych 95 miliardów ton CO2 do roku 2100. Moglibyśmy jednak założyć jeszcze bardziej ambitny cel i ograniczyć wzrost globalnej temperatury do 1,5 stopnia Celsjusza. W takim wypadku wiązałoby się to z wyemitowaniem 20 miliardów ton CO2, a to zaledwie połowa rocznej emisji.
      Autorzy badań zastrzegają, że ich szacunki są prawdopodobnie zbyt niskie. Nie brali bowiem pod uwagę emisji związanych z koniecznością budowy nowych linii przesyłowych, systemów przechowywania energii czy zastąpienia samochodów napędzanych paliwami kopalnymi przez pojazdy elektryczne. Skupili się poza tym tylko na dwutlenku węgla, nie biorąc pod uwagę innych gazów cieplarnianych, jak metan czy tlenek azotu. Zauważają też, że zmiana gospodarki wiąże się nie tylko z problemem emisji, ale też z innymi negatywnymi konsekwencjami, jak konieczność sięgnięcia po rzadziej dotychczas używane minerały, których złoża mogą znajdować się w przyrodniczo cennych czy dziewiczych obszarach, zauważają też, że budowa wielkich farm fotowoltaicznych i wiatrowych wymaga zajęcia dużych obszarów, co będzie wpływało na mieszkających tam ludzi oraz ekosystemy.
      Pokazaliśmy pewne minimum. Koszt maksymalny jest zapewne znacznie większy, mówi Lesk. Dodaje, że badania przyniosły zachęcające wyniki. Pokazują bowiem, że im szybciej i więcej zainwestujemy na początku, tym mniejsze będą koszty. Jeśli jednak wielkie inwestycje nie rozpoczną się w ciągu najbliższych 5–10 lat, stracimy okazję do znacznego obniżenia kosztów.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...