Skocz do zawartości
Forum Kopalni Wiedzy
KopalniaWiedzy.pl

Za miesiąc łazik poleci na Marsa. Twórcy Mars 2020 uhonorowali medyków walczących z COVID-19

Rekomendowane odpowiedzi

Za miesiąc, 20 lipca, wystartuje kolejna misja na Marsa. Tym razem NASA chce umieścić na powierzchni Czerwonej Planety łazik Perseverance. Zadaniem pojazdu będzie poszukiwanie śladów życia w Kraterze Jezero oraz przetestowanie kluczowych technologii, które zostaną wykorzystane podczas przyszłych robotycznych oraz załogowych misji marsjańskich. Jednocześnie Perseverance pobierze próbki gruntu i skał, które zostaną przywiezione na Ziemię w ramach kolejnych misji.

Pięćdziesiąt jeden lat temu NASA kończyła przygotowania do pierwszej załogowej misji na Księżyc. Obecnie stoimy w przededniu kolejnego ważnego momentu eksploracji kosmosu: zebrania próbek na Marsie, stwierdził szef NASA, Jim Bridenstine.

Misja Mars 2020 została zaplanowana w grudniu 2012 roku. Od początku zakładano, że wystartuje ona latem 2020 roku. Na razie wszystko wskazuje na to, że misja odbędzie się zgodnie z planem. Biorąc pod uwagę pozycje Ziemi i Marsa, okienko startowe do misji na Czerwoną Planetę otwiera się co 26 miesięcy. Jeśli Perseverance nie wystartuje w planowanym terminie, trzeba będzie czekać do września 2022 roku. Takie opóźnienie poważnie zaburzyłoby realizację długoterminowych planów realizowanych przez NASA w ramach Mars Exploration Program.

Każda z marsjańskich misji obarczona jest sporym ryzykiem. W przypadku Mars 2020 największym problemem jest posadowienie łazika Perseverance na powierzchni. Jest to bowiem najcięższy ładunek, jaki kiedykolwiek próbowano umieścić na Marsie. Inżynierowie NASA musieli opracować nowe procedury testowe, by sprawdzić, czy zaprojektowane przez nich spadochrony spełnią stawiane przed nimi zadanie. Innym poważnym wyzwaniem technicznym było stworzenie i przetestowanie Sample Caching System, najbardziej złożonego i czystego mechanizmu zbierania próbek kiedykolwiek wysłanego w kosmos.

Jako, że ostateczne przygotowanie do misji Mars 2020 przypadły na szczególny moment, pandemię koronawirusa, zespół  postanowił uhonorować walczących z nią medyków medyków. Do obudowy łazika przymocowano specjalną plakietkę. Na aluminiowej płytce o wymiarach 8x13 centymetrów widzimy Ziemię wspartą na eskulapie, symbolu medycyny. Zaznaczono też trajektorię lotu misji Mars 2020 na Marsa. Chcieliśmy uhonorować tych, którzy postawili dobro innych nad swoim dobrem osobistym. Mamy nadzieję, że gdy przyszłe generacje polecą na Marsa i napotkają na nasz łazik, plakietka przypomni im, że w 2020 roku na Ziemi byli tacy ludzie, mówi Matt Wallace, zastepca dyrektora projektu Perseverance.

Nowy marsjański łazik poszuka śladów życia, będzie badał klimat i geologię Marsa, przygotuje grunt pod przyszłe misje i zbierze oraz przechowa próbki gruntu. Już teraz NASA i Europejska Agencja Kosmiczna zastanawiają się nad przyszłymi misjami, które odbiorą te próbki od Perseverance i przywiozą je na Ziemię do dalszej analizy.

Okienko startowe dla misji Mars 2020 będzie otwarte od 20 lipca do 11 sierpnia. Niezależnie od tego, kiedy misja wystartuje, lądowanie przewidziane jest na 18 lutego 2021 roku. Wyznaczenie ścisłej daty lądowania pozwoli lepiej zrozumieć warunki panujące w miejscu lądowania oraz odpowiednio dostosować pracę satelitów krążących na orbicie Marsa, których zadaniem będzie pomoc w komunikacji pomiędzy lądującą misją Mars 2020 a Ziemią.


« powrót do artykułu

Udostępnij tę odpowiedź


Odnośnik do odpowiedzi
Udostępnij na innych stronach

Jeśli chcesz dodać odpowiedź, zaloguj się lub zarejestruj nowe konto

Jedynie zarejestrowani użytkownicy mogą komentować zawartość tej strony.

Zarejestruj nowe konto

Załóż nowe konto. To bardzo proste!

Zarejestruj się

Zaloguj się

Posiadasz już konto? Zaloguj się poniżej.

Zaloguj się

  • Podobna zawartość

    • przez KopalniaWiedzy.pl
      NASA zaprezentowała pierwsze zdjęcia pełnowymiarowego prototypu sześciu teleskopów, które w przyszłej dekadzie rozpoczną pracę w kosmicznym wykrywaczu fal grawitacyjnych. Budowane przez ekspertów z NASA teleskopy to niezwykle ważne elementy misji LISA (Laser Interferometer Space Antenna), przygotowywanej przez Europejską Agencję Kosmiczną (ESA).
      W skład misji LISA będą wchodziły trzy pojazdy kosmiczne, a na pokładzie każdego z nich znajdą się po dwa teleskopy NASA. W 2015 roku ESA wystrzeliła misję LISA Pathfinder, która przetestowała technologie potrzebne do stworzenia misji LISA. Kosmiczny wykrywacz fal grawitacyjnych ma rozpocząć pracę w 2035 roku.
      LISA będzie składała się z trzech satelitów, tworzących w przestrzeni kosmicznej trójkąt równoboczny. Każdy z jego boków będzie miał długość 2,5 miliona kilometrów. Na pokładzie każdego z pojazdów znajdą się po dwa identyczne teleskopy, przez które do sąsiednich satelitów wysyłany będzie impuls z lasera pracującego w podczerwieni. Promień będzie trafiał w swobodnie unoszące się na pokładzie każdego satelity pokryte złotem kostki ze złota i platyny o boku 46 mm. Teleskopy będą odbierały światło odbite od kostek i w ten sposób, z dokładnością do pikometrów – bilionowych części metra – określą odległość pomiędzy trzema satelitami. Pojazdy będą umieszczone w takim miejscu przestrzeni kosmicznej, że na kostki nie będzie mogło wpływać nic oprócz fal grawitacyjnych. Zatem wszelkie zmiany odległości będą świadczyły o tym, że przez pojazdy przeszła fala grawitacyjna. Każdy z pojazdów będzie miał na pokładzie dwa teleskopy, dwa lasery i dwie kostki.
      Formacja trzech pojazdów kosmicznych zostanie umieszczona na podobnej do ziemskiej orbicie wokół Słońca. Będzie podążała za naszą planetą w średniej odległości 50 milionów kilometrów. Zasada działania LISA bazuje na interferometrii laserowej, jest więc podobna do tego, jak działają ziemskie obserwatoria fal grawitacyjnych, takie jak np. opisywane przez nas LIGO. Po co więc budowanie wykrywaczy w kosmosie, skoro odpowiednie urządzenia istnieją na Ziemi?
      Im dłuższe ramiona wykrywacza, tym jest on bardziej czuły na fale grawitacyjne o długim okresie. Maksymalna czułość LIGO, którego ramiona mają długość 4 km, przypada na zakres 500 Hz. Tymczasem w przypadku LISY będzie to zakres 0,12 Hz. Kosmiczny interferometr będzie więc uzupełnienie urządzeń, które posiadamy na Ziemi, pozwoli rejestrować fale grawitacyjne, których ziemskie urządzenia nie zauważą.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dzieci i młodzież w wieku 10-19 lat, u których zdiagnozowano COVID-19 są narażone na większe ryzyko rozwoju cukrzycy typu 2. w ciągu 6 miesięcy po diagnozie, niż ich rówieśnicy, którzy zapadli na inne choroby układu oddechowego. Takie wnioski płyną z badań przeprowadzonych przez naukowców z Wydziału Medycyny Case Western Reserve University. Uczeni przeprowadzili metaanalizę wpływu COVID-19 na ryzyko rozwoju cukrzycy typu 2. u dorosłych, a następnie postanowili poszerzyć swoją wiedzę o wpływ infekcji na osoby młodsze.
      Badacze przeanalizowali przypadki 613 602 pacjentów pediatrycznych. Dokładnie połowę – 306 801 – stanowiły osoby, u których zdiagnozowano COVID-19, w drugiej grupie znaleźli się młodzi ludzie, którzy zachorowali na inne choroby układu oddechowego. Poza tym obie grupy były do siebie podobne. Dodatkowo utworzono też dwie podgrupy po 16 469 pacjentów, w których znalazły się osoby z otyłością oraz COVID-19 lub inną chorobą układu oddechowego.
      Naukowcy porównali następnie liczbę nowo zdiagnozowanych przypadków cukrzycy typu 2. w obu grupach. Pod uwagę brano diagnozy, które postawiono miesiąc, trzy miesiące i sześć miesięcy po wykryciu pierwszej z chorób. Okazało się, że ryzyko rozwoju cukrzycy u osób, które zachorowały na COVID-19 było znacznie wyższe. Po 1 miesiącu było ono większe o 55%, po trzech miesiącach o 48%, a po pół roku – o 58%. Jeszcze większe było u osób otyłych. W przypadku dzieci i nastolatków, które były otyłe i zapadły na COVID-19 ryzyko zachorowania na cukrzycę było o 107% wyższe po 1 miesiącu, o 100% wyższe po drugim i o 127% wyższe po pół roku. Największe jednak niebezpieczeństwo związane z rozwojem cukrzycy wisiało nad tymi, którzy z powodu COVID-19 byli hospitalizowani. Ryzyko to było większe – odpowiednio do czasu po diagnozie COVID-19 – o 210%, 174% i 162%.
      Obecnie nie wiadomo, jaki może być związek COVID-19 z cukrzycą. Tym bardziej, że przeprowadzone badania to analiza retrospektywna, która nie pozwala na wykazanie związku przyczynowo-skutkowego. Potrzeba więc dalszych badań, które pozwolą określić, czy zachorowanie na COVID-19 w jakikolwiek sposób wpływa na układy związane z działaniem glukozy czy insuliny w naszym organizmie.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Po 2,5 roku pracy na dnie Krateru Jezero łazik Perseverance przygotowuje się do wielomiesięcznej wspinaczki na zachodnią krawędź Krateru. Prawdopodobnie napotka tam najbardziej stromy i najtrudniejszy teren, z jakim przyszło mu się dotychczas zmierzyć. Perseverance wyruszy w podróż 18 sierpnia, a wspinaczka i badanie terenu będą już 5. kampanią naukową prowadzoną od czasu lądowania 18 lutego 2021 roku.
      Perseverance zakończył 4 projekty badawcze, zebrał 22 próbki skał i przejechał ponad 18 mil. Zaczynamy teraz Crater Rim Campaign. Łazik jest w doskonałym stanie, a my nie możemy się doczekać, by zobaczyć, co jest na szczycie badanego przez nas obszaru, mówi Art Thompson, menedżer projektu Perseverance w Jet Propulsion Laboratory.
      Głównymi celami najnowszej kampanii badawczej są dwa miejsca, nazwane „Pico Turquino” oraz „Witch Hazel Hill”. Na zdjęciach z orbiterów krążących wokół Marsa widać, że na Pico Turquino znajdują się stare pęknięcia, które mogą powstać w wyniku zjawisk hydrotermalnych. Z kolei warstwy, z których zbudowane jest Witch Hazel Hill sugerują, że struktura ta powstała w czasach, gdy na Marsie panował zupełnie inny klimat niż obecnie. Zdjęcia ujawniły tam podłoże skalne o jaśniejszym kolorze, podobne do tego, które łazik znalazł na obszarze zwanym „Bright Angel”. Tamtejsza skała „Cheyava Falls” miała strukturę i sygnatury chemiczne wskazujące, że mogła powstać przed miliardami lat w wyniku działania organizmów żywych w środowisku wodnym.
      Podczas podróży ku krawędzi krateru Perseverance będzie polegał na półautomatycznych mechanizmach, których celem jest unikanie zbyt dużego ryzyka. Ma wspinać się po stokach nachylonych nawet o 23 stopnie i unikać miejsc, których nachylenie będzie wynosiło ponad 30 stopni. Łazik wjedzie na wysokość 300 metrów i zakończy podróż w miejscu nazwanym „Aurora Park”.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      We wrześniu 2022 roku NASA przeprowadziła pierwszy w historii, i od razu udany, test obrony Ziemi przed asteroidami. W ramach misji DART niewielki pojazd uderzył w asteroidę Dimorphos i zmienił jej orbitę wokół asteroidy Didymos. Od tamtego czasu naukowcy badają obie asteroidy oraz skutki testu. Na łamach Nature Communications ukazało się właśnie 5 interesujących artykułów na temat Dimorphos i Didymos.
      Dzięki obrazom przekazanym przed zderzeniem przez DART i towarzyszący mu pojazd LICIACube naukowcy z Applied Physics Laboratory na Uniwersytecie Johnsa Hopkinsa mogli przeanalizować geologię obu asteroid. Olivier Barnouin i Ronald-Louis Ballouz stwierdzili, że mniejsza Dimorphos była pokryta głazami o różnych rozmiarach, natomiast Didymos jest bardziej gładka na mniejszych szerokościach i kamienista na większych, ma też więcej kraterów. Obaj autorzy uważają, że Dimorphos pochodzi od Didymos, od której się oderwała. Istnieją bowiem naturalne procesy, które przyspieszają obrót niewielkich asteroid. Mogą one być o odpowiedzialne za nadawanie im kształtu i odrywanie się materiału z ich powierzchni. Barnouin i Ballouz uważają, że powierzchnia Didymos ukształtowała się 12,5 miliona lat temu, a Dimorphos zyskała swój obecny kształt przed mniej niż 300 000 lat.
      Autorami kolejnej pracy są Maurizio Pajola z włoskiego Narodowego Instytutu Astrofizyki (INAF) i jego międzynarodowy zespół naukowy. Tutaj porównano kształt, rozmiary oraz rozkład głazów na powierzchni obu asteroid. Badacze stwierdzli, że Dimorphos formowała się etapami, prawdopodobnie z materiału pochodzącego z Didymos. Wyniki takie potwierdzają dominującą teorię, która mówi, że niektóre układy podwójne asteroid powstają w wyniku kumulowania się materiału z większej asteroidy na mniejszej, która staje się jej księżycem.
      Analizy zmęczenia cieplnego – stopniowego osłabiania i pękania materiału powodowanego przez zmiany temperatury – podjęła się Alice Lucchetti z INAF. Wraz z zespołem stwierdziła, że w wyniku takiego procesu tempo pękania powierzchni Dimorphos i oddzielania się od niej głazów może zachodzić znacznie szybciej, niż dotychczas sądzono.
      Naomi Murdoch z Uniwersytetu w Tuluzie oceniła nośność gruntu Didymos i stwierdziła, że jest ona co najmniej 1000-krotnie mniejsza niż suchego piasku czy gruntu na Księżycu. To bardzo ważny parametr, który pozwala nam zrozumieć i przewidzieć reakcję powierzchni na, na przykład, uderzenie pojazdu, który ma zmienić orbitę asteroidy.
      Autorem ostatniego z opublikowanych badań jest kolega Murdoch z uczelni, Colas Robin. Wraz z zespołem analizował on głazy znajdujące się na powierzchni Dimorphos i porównywał je z głazami z asteroid Itokawa, Ryugu oraz Bennu. Naukowcy zauważyli podobieństwa sugerujące, że wszystkie te asteroidy powstały i ewoluowały w podobny sposób.
      Wspomniane badania pozwalają nam lepiej zrozumieć pochodzenie, ewolucję i budowę Didymos i Dimorphos. Możemy też dowiedzieć się z nich, dlaczego misja DART okazała się tak wielkim sukcesem. Wiedza ta przyda się już wkrótce. Jeszcze w bieżącym roku wystartuje misja Hera Europejskiej Agencji Kosmicznej, która poleci do układu Didymos-Dimorphos. W 2026 roku wejdzie ona na orbitę asteroid i będzie je szczegółowo badała, uwzględniają przy tym wpływ misji DART.

      « powrót do artykułu
    • przez KopalniaWiedzy.pl
      Dzisiaj o godzinie 16:19 czasu polskiego ma wystartować misja Psyche. Jej celem jest wyjątkowy obiekt – największa w Układzie Słonecznym metaliczna asteroida Psyche. Znajduje się ona w głównym pasie planetoid, a wystrzelony pojazd będzie musiał przebyć 3,5 miliarda kilometrów zanim do niej dotrze. Dotychczas wysłane przez ludzi pojazdy odwiedzały obiekty zbudowane ze skał czy lodu. NASA wysyła zaś satelitę do asteroidy o wysokiej zawartości żelaza. W przeszłości Psyche mogła być jądrem planetozymalu, zalążka planety. Może być też pozostałością po obiekcie nieznanego obecnie typu, który był bogaty w żelazo i formował się gdzieś w Układzie Słonecznym.
      Badania Psyche – jeśli rzeczywiście jest to jądro planetozymalu – mogą pokazać, jak wygląda jądro Ziemi lub innych podobnych planet. Z tego punktu widzenia misję można uznać za wyprawę do wnętrza Ziemi. Nie jesteśmy w stanie bezpośrednio obserwować ziemskiego jądra. Psyche może dać nam taką możliwość i stanowić jedyną w swoim rodzaju okazję do badania początków planet typu ziemskiego.
      Psyche ma nieregularny kształt, jeśli wyobrazimy sobie ją jako owal, to wymiary asteroidy wyniosą 280x232 kilometry. Powierzchnia asteroidy wynosi 165 800 km2, czyli ponad połowę powierzchni Polski. Asteroida jest bardzo gęsta. Jej metr sześcienny ma masę 3400–4100 kilogramów. Odległość planetoidy od Ziemi waha się od 300 do 600 milionów kilometrów. Dla porównania warto pamiętać, że średnia odległość Ziemi od Słońca to 150 milionów kilometrów.
      Dotychczasowe badania, dokonywanie za pomocą radarów i mierzenia inercji termalnej wskazują, że Psyche to połączenie skał i metalu, a metal stanowi od 30 do 60 procent objętości asteroidy. Obserwacje radarowe i za pomocą teleskopów optycznych pozwoliły naukowcom na stworzenie trójwymiarowego modelu asteroidy. Wynika z niego, że znajdują się na niej dwa obniżenia podobne do kraterów, a na powierzchni występują znaczne różnice w kolorze i zawartości metalu. Dopóki jednak ludzkość nie wyśle na Psyche sondy, nie może być pewna, jak asteroida w rzeczywistości wygląda.
      Pojazd Psyche ma wielkość półciężarówki. Dotrze do celu w lipcu 2029 roku i przez 2 lata będzie krążył wokół asteroidy, prowadząc badania. Wyposażono go w kamerę multispektralną, która wykona zdjęcia zarówno w paśmie widzialnym, jak i w podczerwieni. Spektrometr rentgenowski i neutronowy pozwoli na badanie składu powierzchni asteroidy, a za pomocą magnetometru można będzie zmierzyć jej pole magnetyczne. Skaliste planety, takiej jak Ziemia, generują pole magnetyczne w płynnych metalicznych jądrach. Niewielkie zamrożone obiekty, jak asteroidy. Nie mają pola magnetycznego. Jeśli zaś magnetometr wykryje na Psyche pozostałości pola magnetycznego, będzie to silnym potwierdzeniem hipotezy, że asteroida to pozostałość jądra formującej się planety. Naukowcy liczą też na to, że na Psyche znajdą ślady ferrowulkanizmu. To nigdy nie obserwowane zjawisko, polegające na erupcji płynnego żelaza, do której dochodziło, gdy stygł odłupany od planety fragment jądra.
      Przy okazji misji Psyche NASA przetestuje system kosmicznej komunikacji laserowej (DSOC – Deep Space Optical Communications). Obecnie kontakt z pojazdami pracującymi poza Ziemią zapewniają fale radiowe. Mają one częstotliwość od 3 Hz do 3 THz. Tymczasem częstotliwość lasera podczerwonego sięga 300 THz, zatem transmisja danych za pośrednictwem laserów byłaby nawet 100-krotnie szybsza niż za pomocą fal radiowych. Ponadto laserowe systemy komunikacji są znacznie mniejsze i lżejsze, niż systemy komunikacji radiowej, co ma olbrzymie znaczenie podczas misji w kosmosie. Psyche nie będzie polegała na DSOC, a na standardowej komunikacji radiowej. Jeśli jednak testy systemu laserowego wypadną pomyślnie, będzie może zacząć stosować lasery w misjach kosmicznych.

      « powrót do artykułu
  • Ostatnio przeglądający   0 użytkowników

    Brak zarejestrowanych użytkowników przeglądających tę stronę.

×
×
  • Dodaj nową pozycję...