Jump to content
Forum Kopalni Wiedzy
Sign in to follow this  
KopalniaWiedzy.pl

Zidentyfikowano 11 dużych asteroid, które mogą uderzyć w Ziemię

Recommended Posts

Algorytm sztucznej inteligencji zidentyfikował 11 asteroid o średnicy ponad 100 metrów każda, które mogą uderzyć w Ziemię i spowodować olbrzymie zniszczenia. Każdy z tych obiektów jest znacznie większy od meteorytu tunguskiego (50–80 metrów średnicy), który eksplodował na Ziemią i powalił drzewa na obszarze ponad 2000 km2.

Z pisma Astronomy & Astrophysics dowiadujemy się, że naukowcy z holenderskiego Uniwersytetu w Leiden stworzyli algorytm sztucznej inteligencji, który trenowali na superkomputerze ALICE. John D. Hefele, Francesco Bortolussi i Simon Portegies Zwart wykorzystali sieć neuronową, na której najpierw modelowali ruch planet i Słońca w ciągu najbliższych 10 000 lat. Następnie „przewinęli” swoją symulację od tyłu, dodając do niej hipotetyczne asteroidy „wyrzucane” z Ziemi w przestrzeń kosmiczną.

Gdy uruchomili symulację we właściwej kolejności, otrzymali bazę danych wyimaginowanych asteroid, które mogłyby uderzyć w Ziemię. Ta baza posłużyła im do treningu sieci neuronowej, której zadaniem było następnie określenie, która z prawdziwych znanych nam asteroid może stanowić zagrożenie dla naszej planety.

Testy dowiodły, że oprogramowanie, nazwane Hazard Object Identifier (HOI, co po holendersku oznacza też „cześć”), potrafi zidentyfikować 90,99% potencjalnie niebezpiecznych obiektów z udostępnionej przez NASA 2000 obiektów bliskich Ziemi.

Kolejne symulacje wykazały, że w latach 2131 – 2923 co najmniej 11 dużych, ponad 100-metrowych znanych nam obecnie asteroid, przybliży się do Ziemi na odległość mniejszą niż 1/10 odległości pomiędzy Ziemią a Księżycem.

Obserwacje obiektów bliskich Ziemi (NEO) prowadzone są od lat. Jednak obecnie stosowane oprogramowanie nie rozpoznało w tych asteroidach zagrożenia. Stało się tak dlatego, że asteroidy mają trudne do przewidzenia orbity, a oprogramowanie to używa innych metod obliczeniowych niż wspomniany algorytm sztucznej inteligencji.

Wiemy teraz, że nasze oprogramowanie działa. Będziemy chcieli je udoskonalić i wykorzystać w nim więcej danych. Problem w tym, że niewielkie różnice w obliczeniach orbity mogą prowadzić do bardzo różnych wniosków, mówi profesor Portegies Zwart.
Tego typu badania pozwolą nam w przyszłości uchronić Ziemię przed katastrofalnym w skutkach zderzeniem z asteroidą. Im szybciej dowiemy się o zagrożeniu, tym więcej czasu będziemy mieli, by na nie zareagować. Nie od dzisiaj bowiem prowadzi się badania koncepcyjne nad niszczeniem czy przekierowaniem obiektów zagrażających Ziemi.

Temat asteroid zagrażających Ziemi i obrony przed nimi poruszaliśmy już wielokrotnie w tekstach Szef NASA zaleca modlitwę, Znamy już ponad 10 000 NEO, NASA planuje test technologii ochrony Ziemi przed asteroidami, Obronienie Ziemi będzie trudniejsze, niż sądziliśmy czy Źle szacujemy ryzyko kosmicznej katastrofy?


« powrót do artykułu

Share this post


Link to post
Share on other sites

Widzę że SI jest na topie i tylko patrzeć jak piekarz będzie umieszczał na folii że ten bochenek został pokrojony przez SI.

A wracając do asteroid to nie widzę nad czym miałaby tutaj dumać ta SI. Jak teleskop namierzy asteroidę i określi jej orbitę, masę i prędkość to algorytmami stosowanymi od dziesięcioleci czy stuleci wyliczy dokładnie przyszłe położenie z dokładnością ograniczoną dokładnością obserwacji. Co w tej sprawie może zrobić więcej SI?

Share this post


Link to post
Share on other sites
Quote

Testy dowiodły, że oprogramowanie, nazwane Hazard Object Identifier (HOI, co po holendersku oznacza też „cześć”), potrafi zidentyfikować 90,99% potencjalnie niebezpiecznych obiektów z udostępnionej przez NASA 2000 obiektów bliskich Ziemi.

AI będzie musiało wycinać 35k satelitów Starlinka :(

Co to znaczy "jak teleskop namierzy asteroidę"? Zdaje się, że teraz software jest w stanie zidentyfikować obiekty, które zmieniły położenie na wykonanych zdjęciach, ale podejrzewam, że potrzeba astronomów do analizy odkrycia. Jak AI może znaleźć 90% obiektów, to ludzie będą mieli więcej czasu na pozostałe 10%. Po za tym software może od razu przeliczyć zbliżone parametry orbity.

Share this post


Link to post
Share on other sites
11 minut temu, cyjanobakteria napisał:

Co to znaczy "jak teleskop namierzy asteroidę"?

Dokładnie. Teleskop to se może, podobnie jak mikroskop, młotek czy gwóźdź.

12 minut temu, cyjanobakteria napisał:

Zdaje się, że teraz software jest w stanie zidentyfikować obiekty, które zmieniły położenie na wykonanych zdjęciach

Sam nie bardzo...

 

Share this post


Link to post
Share on other sites
3 hours ago, Astro said:

Sam nie bardzo...

Czyli tylko flaguje obiekty (asteroidy i komety), które przesunęły się na tle gwiazd?

Share this post


Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Sign in to follow this  

  • Similar Content

    • By KopalniaWiedzy.pl
      Sonda OSIRIS-REx pobrała tak dużo próbek z asteroidy Bennu, że zgromadzony materiał uniemożliwia zamknięcie pojemnika i próbki uciekają w przestrzeń kosmiczną. Główny naukowiec misji, Dante Lauretta poinformował, że do pojemnika trafiło znacznie więcej materiału, niż się spodziewano. Próbnik, znajdujący się na końcu robotycznego ramienia, które dotknęło asteroidy, zagłębił się w jej powierzchnię bardziej niż przewidywano i z taką siłą, że zassał materiał, który zgromadził się również na krawędziach, uniemożliwiając zamknięcie.
      Naukowcy oceniają, że próbnik wdarł się na 48 centymetrów wgłąb Bennu. Padliśmy ofiarą własnego sukcesu, mówi Lauretta. Naukowiec poinformował, że kontrola misji nie może zrobić nic, by oczyścić próbnik i zapobiec dalszemu wydostawaniu się próbek. Jedyne, co pozostaje, to jak najszybciej przenieść próbki do kontenera, w którym mają wrócić na Ziemię.
      Przypomnijmy, że OSIRIS-REx to pierwsza misja NASA, której celem jest pobranie próbek bezpośrednio z asteroidy. Zgodnie z planem sonda miała z pomocą robotycznego ramienia dotknąć asteroidy, wystrzelić w kierunku jego powierzchni sprężony azot, a wzbity w ten sposób materiał miał trafić do specjalnego pojemnika, stamtąd zaś do kontenera, w którym zostanie wysłany na Ziemię. Zakładano, że zebrane zostanie co najmniej 60 gramów materiału, a weryfikacja, czy rzeczywiście udało się go pozyskać, miała odbyć się dwuetapowo. Najpierw za pomocą kamery kontrola misji miała zobaczyć, czy materiał jest w pojemniku. Następnie OSIRIS-REx miał wykonać obrót wokół własnej osi, co pozwoliłoby na określenie wagi zebranego materiału.
      Teraz wiadomo, w pojemniku są setki gramów próbek. I pojawił się problem, bo pojemnik się nie zamyka, a próbki z niego wylatują. W związku z tym zdecydowano, że materiał zostanie przeniesiony do kapsuły, w której trafi na Ziemię, już we wtorek. Czyli znacznie wcześniej niż zakładał plan misji. Najważniejszy jest teraz czas, mówi Thomas Zurbuchen, dyrektor NASA ds. misji naukowych.
      Misja OSIRIS-REx to pierwsza misja NASA, w ramach której pobrane z asteroidy próbki mają zostać przywiezione na Ziemię. Jako cel wybrano asteroidę Bennu, gdyż składa się on z materiałów bogatych w węgiel i naukowcy sądzą, że znajduje się tam najstarszy materiał, z którego powstał Układ Słoneczny. Jego zdobycie i przeanalizowanie pozwoli lepiej zrozumieć jak powstał Układ Słoneczny i życie na Ziemi.
      Samo dotknięcie asteroidy przez robotyczne ramię sondy było dużym sukcesem. Operację udało się wykonać z dokładnością do 1 metra. Jednak gdy dwa dni później naukowcy przyjrzeli się zdjęciom z sondy ze zdumieniem zobaczyli chmurę materiału z Bennu krążącą wokół sondy i od niej odlatującą. Lauretta mówi, że po zablokowaniu robotycznego ramienia sytuację udało się ustabilizować, jednak nie wiadomo, jak wiele materiału zostało utracone.
      Niezależnie od tego, ile materiału udało się zebrać, OSIRIS-REx pozostanie w pobliżu Bennu aż do marca. Marzec to – biorąc pod uwagę względną pozycję Ziemi i Bennu – najbliższy możliwy termin, w którym sonda może rozpocząć powrót. Próbki trafią na Ziemię w 2023 roku.
      W związku z niemożnością zamknięcia próbnika nie będziemy wiedzieli, ile materiału udało się zebrać. Manewr obrotu wokół własnej osi został odwołany w obawie przed utratą tego, co zebrano. Musimy poczekać, aż próbki wrócą na Ziemię. Dopiero wtedy się przekonamy, ile mamy. Jak się domyślacie, jest to dla nas trudne. Dobra wiadomość jest taka, że mamy bardzo dużo materiału, mówi Lauretta.
      Pierwszymi, którym udało się przywieźć na Ziemię próbki z asteroidy, są Japończycy. Wystrzelona w 2003 rok sonda Hayabusa pobrała z asteroidy Itokawa mniej niż 1 gram materiału, który trafił na Ziemię w 2010 roku. Druga podobna misja właśnie się kończy. Na 6 grudnia bieżącego roku zaplanowano powrót próbnika z sondy Hayabusa2. Wystrzelono ją w 2014 roku, by pobrała próbki z asteroidy Ryugu. Na Ziemię wróci 100 miligramów próbek.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Zwykle zastanawiamy się, ile pozasłonecznych planet zawierających życie jesteśmy w stanie zaobserwować z Ziemi. Jednak pytanie to można odwrócić. I właśnie to zrobili profesorowie Lisa Kaltenegger z Cornell University i Joshua Pepper z Lehigh University. Postanowili oni zbadać, z ilu układów planetarnych można bezpośrednio obserwować Ziemię. Innymi słowy, ile potencjalnych cywilizacji pozaziemskich, znajdujących się na podobnym etapie rozwoju, może nas badać.
      Uczeni zidentyfikowali 1004 gwiazdy ciągu głównego, czyli dość podobne do Słońca, które mogą posiadać podobne do Ziemi planety w ekosferze. Wszystkie wspomniane gwiazdy znajdują się w promieniu 300 lat świetlnych od Ziemi, zatem w odległości, z której obca cywilizacja powinna być w stanie wykryć chemiczne sygnatury życia w ziemskiej atmosferze.
      Odwróćmy nasz punkt widzenia. Przenieśmy się na inne planety i zapytajmy, z których układów planetarnych można obserwować tranzyty Ziemi na tle Słońca, mówi Kaltenegger. Uczona przypomina, że obserwowanie tranzytów to kluczowy sposób obserwowania planet pozasłoneczych i określania ich cech charakterystycznych. Już wkrótce, dzięki Teleskopowi Kosmicznemu Jamesa Webba (JWST), będziemy w stanie – badając tranzyty – określać skład chemiczny atmosfer planet spoza Układu Słonecznego. Jeśli z naszego punktu widzenia jakaś planeta przechodzi na tle swojej gwiazdy, zatem znajduje się w linii prostej pomiędzy swoją gwiazdą a Ziemią, to już teraz – badając zmianę jasności gwiazdy przesłoniętej przez planetę – próbujemy określać np. wielkość planety. Instrument taki jak JWST pozwoli badać światło gwiazdy przechodzące przez atmosferę planety i określić skład chemiczny tej planety. Będziemy więc mogli wykrywać w niej molekuły i inne elementy wskazujące na istnienie życia. To samo jednak mogą robić potencjalne cywilizacje pozaziemskie.
      Jedynie niewielki ułamek egzoplanet przechodzi na tle swojej gwiazdy z naszego punktu widzenia. Z punktu widzenia wszystkich zidentyfikowanych przez nas układów Ziemia przechodzi na tle Słońca. A to powinno przyciągnąć uwagę potencjalnych obserwatorów. Jeśli poszukujemy inteligentnego życia, które może nas znaleźć i zechcieć nawiązać kontakt, to właśnie stworzyliśmy mapę, gdzie należy szukać, dodaje Kaltenegger.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Sonda OSIRIS-REx dotknęła asteroidy Bennu. Na przysłanych przez nią zdjęciach widać, jak zbliża się do powierzchni asteroidy, dotyka jej wzbijając chmurę odłamków, a następnie odlatuje. Wstępne dane wskazują, że OSIRIS-REx dotknął Bennu w odległości 1 metra od wyznaczonego miejsca, co już samo w sobie jest dużym sukcesem. Urządzenie miało kontakt z asteroidą przez około 6 sekund.
      Sekundę po tym, jak głowica robotycznego ramienia TAGSAM (Touch-And-Go Sample Acquisition Mechanism) dotknęła skały, w kierunku Bennu został wystrzelony strumień sprężonego azotu, który spowodował pojawienie się jeszcze większej chmury odłamków. To właśnie zebranie próbek asteroidy jest celem misji OSIRIS-REx. Główny etap ich zbierania trwał przez pierwsze 3 sekundy.
      Na razie nie wiadomo, czy i ile próbek udało się zebrać. Jedną z metod weryfikacji będą zdjęcia robotycznego ramienia. Ponadto za dwa dni sonda ma przeprowadzić manewr polegający na obrocie wokół własnej osi, co ma pozwolić na określenie wagi zebranych próbek.
      Celem misji jest zebranie co najmniej 60 gramów materiału i dostarczenie go na Ziemię. Jeśli okaże się, że próbek jest zbyt mało, sonda ponownie spróbuje je pobrać. W takim wypadku OSIRIS-REx – nie wcześniej niż w styczniu 2021 – wyląduje w miejscu zapasowym nazwanym Osprey i wykorzysta tam dwa pozostałe pojemniki ze sprężonym azotem.
      Z przesłanych dotychczas zdjęć wynika, że sonda jest w dobrej kondycji. W momencie zbliżania się do Bennu miała prędkość 10 cm/s, oddalała się zaś z prędkością 40 cm/s. Sekwencja zdjęć rozpoczyna się w odległości około 25 metrów nad powierzchnią asteroidy, a ostatnia fotografia została wykonana na wysokości około 13 metrów, w 35 sekund po dotknięciu powierzchni Bennu.
       


      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Amerykańsko-niemiecki zespół naukowcy zidentyfikował 24 planety, które mogą lepiej nadawać się do życia niż Ziemia. Są wśród nich starsze, nieco większe, nieco cieplejsze i prawdopodobnie bardziej wilgotne od Ziemi. Uczeni stwierdzają również, że życie może łatwiej rozwijać się na planetach, które wolniej niż Ziemia krążą wokół gwiazd starszych od Słońca.
      Wszystkie ze zidentyfikowanych planet znajdują się w odległości większej niż 100 lat świetlnych od Ziemi, a ich zidentyfikowanie pozwoli w przyszłości skupić się na nich w poszukiwaniu śladów życia pozaziemskiego. Planety takie mogłyby być szczegółowo badane za pomocą Teleskopu Kosmicznego Jamesa Webba, obserwatoriów LUVIOR czy PLATO.
      Przyszłe teleskopy kosmiczne pozwolą na zdobycie kolejnych danych, dzięki czemu lepiej wybierzemy kandydatów do dalszych badań. Musimy skupić się na tych planetach, które posiadają najbardziej obiecujące warunki do powstania życia. Powinniśmy jednak uważać, by nie utknąć na poszukiwaniach drugiej Ziemi, gdyż mogą istnieć planety zdolne do podtrzymania życia innego niż znamy, mówi profesor Schulze-Makuch z Washington State University i Uniwersytetu Technicznego w Berlinie.
      Gwiazdy takie jak Słońce żyją około 10 miliardów lat. Jako, że na Ziemi bardziej złożone formy życia powstały dopiero po 4 miliardach lat, wiele gwiazd typu słonecznego może umrzeć, zanim w ich układzie planetarnym pojawią się złożone formy życia. Dlatego też naukowcy przyglądali się nie tylko gwiazdom typu widmowego G, czyli żółtym karłom, do których należy Słońce. Przeanalizowali też znane nam egzoplanety krążące wokół pomarańczowych karłów (gwiazda typu K). Są one chłodniejsze, mniej masywne i mniej jasne, niż żółte karły, ale za to żyją od 20 do 70 miliardów lat.
      Warto jednak pamiętać, że sama planeta nie może być zbyt stara. Nie może bowiem wyczerpać swojego wewnętrznego ciepła i utracić ochronnego pola magnetycznego. Ziemia liczy sobie obecnie około 4,5 miliarda lat. Zdaniem specjalistów najlepszy dla planety okres na podtrzymanie i rozwój życia to wiek 5–8 miliardów lat.
      Ważna jest też wielkość planety. Planeta o 10% większa od Ziemi powinna mieć więcej lądów, a taka o masie około 50% większej od Ziemi powinna dłużej utrzymać wewnętrzne ciepło i charakteryzować się silniejszym polem magnetycznym, które na dłużej zatrzyma atmosferę. Autorzy badań przypominają też o wodzie mówiąc, że nieco więcej wody, szczególnie w postaci wilgoci w powietrzu i chmur, powinno pomóc życiu. Podobnie jest z temperaturą. Planety o średniej temperaturze około 5 stopni Celsjusza wyższej niż Ziemi, w połączeniu z większą wilgotnością, powinny wyewoluować większą różnorodność form życia.
      Schulze-Makuch i jego zespół uznali, że supergościnna planeta powinna krążyć wokół pomarańczowego karła, liczyć sobie 5–8 miliardów lat, być o 10% większa i nie więcej niż 50% bardziej masywna niż ZIemia, posiadać średnią temperaturę powierzchni o 5 stopni Celsjsuza wyższą niż na Ziemi, jej wilgotna atmosfera powinna zawierać 25–30 procent tlenu, a resztę powinny stanowić gazy obojętne, powinny na niej znajdować się rozproszone masy wody i lądów, z wieloma płyciznami i archipelagami. Planeta powinna posiadać duży księżyc o masie od 1 do 10 procent masy planety i znajdujący się w odległości 10–100 średnic planety, powinny na niej zachodzić procesy geologiczne takie jak tektonika płyt lub podobne oraz powinna posiadać silne pole magnetyczne.
      Jako, że kilku z tych elementów (jak np. rozkład mas lądowych, obecność księżyca czy procesów tektonicznych) nie jesteśmy obecnie w stanie badać, naukowcy skupili się na elementach, które już teraz możemy obserwować. Badali zatem typ gwiazdy, wiek planety, jej prawdopodobną wielkość i masę oraz panujące temperatury.
      Gdy naukowcy przyjrzeli się bliżej 24 wybranym przez siebie planetom okazało się, że 9 z nich krąży wokół gwiazdy typu K, 16 z nich ma od 5 do 8 miliardów lat, a na 5 panują temperatury odbiegające od temperatury optymalne nie więcej niż o 10 stopni Celsjusza. Tylko jeden z kandydatów na planetę – KOI 5715.01 – spełniał trzy kryteria planety supergościnnej. Jednak średnie temperatury na tej planecie wynoszą prawdopodobnie 11,59 stopnia Celsjusza, czyli mniej niż na Ziemi. Naukowcy nie wykluczają jednak, że panuje tam silniejszy efekt cieplarniany niż na naszej planecie, więc temperatury te mogą być wyższe, co może czynić KOI 5715.01 planetą supergościnną.
      Szczegóły badań opublikowano w piśmie Astrobiology.

      « powrót do artykułu
    • By KopalniaWiedzy.pl
      Od dawna słyszymy teorię, że w przeszłości Ziemia była sucha, a wodę przyniosły z czasem bombardujące ją komety i asteroidy. Tymczasem badania opublikowane właśnie na łamach Science sugerują, że woda mogła istnieć na naszej planecie od zarania jej dziejów.
      Naukowcy z Centre de Recherches Pétrographiques et Géochimiques we Francji odkryli, że grupa kamiennych meteorytów o nazwie chondryty enstatytowe, zawiera na tyle dużo wodoru, by dostarczyć na Ziemię co najmniej trzykrotnie więcej wody niż jej zawartość w ziemskich oceanach. Chondryty enstatytowe mają skład taki, jak obiekty z wewnętrznych części Układu Słonecznego, zatem taki, z jakiego powstała Ziemia.
      Nasze odkrycie pokazuje, że materiał, z jakiego powstała Ziemia mógł w znacznym stopniu dostarczyć jej wodę. Materiały zawierające wodór były obecne w wewnętrznych częściach Układu Słonecznego w czasie, gdy formowały się planety skaliste. Nawet jeśli temperatura była wówczas zbyt wysoka, by woda występowała w stanie ciekłym, mówi główny autor badań, Laurette Piani.
      Najnowsze odkrycie to spore zaskoczenie, gdyż zawsze sądzono, że materiał, z którego powstała Ziemia, był suchy. Pochodził bowiem z wewnętrznych obszarów formującego się Układu Słonecznego, gdzie temperatury nie pozwalały na kondensację wody.
      Chondryty enstatytowe pokazują, że woda nie musiała dotrzeć na naszą planetę z krańców Układu. Są rzadkie, stanowią jedynie 2% meteorytów znajdowanych na Ziemi. Jednak ich podobny do Ziemi skład izotopowy wskazuje, że jest z takiego właśnie materiału powstała planeta. Mają bowiem podobne izotopy tlenu, tytanu, wapnia, wodoru i azotu co Ziemia. Jeśli chondryty enstatynowe tworzyły Ziemię – z ich skład izotopowy na to wskazuje – to oznacza, że miały one w sobie tyle wody, by wyjaśnić jej pochodzenie na naszej planecie. To niesamowite, ekscytuje się współautor badań, Lionel Vacher.
      Badania wykazały też, że znaczna część azotu obecnego w ziemskiej atmosferze może pochodzi z chondrytów enstatynowych. Mamy do dyspozycji niewiele chondrytów estatynowych, które nie zostały zmienione przez asteroidę, której były częścią, ani przez Ziemię. Bardzo ostrożnie dobraliśmy chondryty do naszych badań i zastosowaliśmy specjalne techniki analityczne, by upewnić się, że to, co znajdziemy, nie pochodzi z Ziemi, mówi uczony. Badania wody w meteorytach zostały przeprowadzone za pomocą spektrometrii mas i spektrometrii mas jonów wtórnych.
      Założono, że chondryty enstatynowe uformowały się blisko Słońca. Były więc powszechnie uznawane za suche i prawdopodobnie z tego powodu nie przeprowadzono ich dokładnych badań pod kątem obecności wodoru, mówi Piani.

      « powrót do artykułu
  • Recently Browsing   0 members

    No registered users viewing this page.

×
×
  • Create New...